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PREFACE

NEW TO THE SIXTH EDITION

Use of modern Shader-Based OpenGL throughout

No use of OpenGL functions deprecated with OpenGL 3.1

Increased detail on implementing transformations and viewing in both appli-
cation code and shaders

Consistency with OpenGL ES 2.0 and WebGL

Use of C++ instead of C

Addition of vector and matrix classes to create application code compatible
with the OpenGL Shading Language (GLSL)

Discussion of per-vertex and per-fragment lighting

Addition of polygon and Delaunay triangularization

Introduction to volume rendering

All code examples redone to be compatible with OpenGL 3.1

New co-author, Dave Shreiner, author of theOpenGL Programming Guide

This book is an introduction to computer graphics, with an emphasis on applica-
tions programming. The “rst edition, which was published in 1997, was some-

what revolutionary in using a standard graphics library and a top-down approach.
Over the succeeding 13 years and “ve editions, this approach has been adopted by
most introductory classes in computer graphics and by virtually all the competing
textbooks.

The major changes in graphics hardware over the past few years have led to major
changes in graphics software. For its “rst “fteen years, new OpenGL versions were
released with new versions always guaranteeing backward compatibility. The ability
to reuse code as the underlying software was upgraded was an important virtue, both
for developers of applications and for instructors of graphics classes. OpenGL 3.0
announced major changes, one of the key ones being that, starting with OpenGL 3.1,
many of the most common functions would be deprecated. This radical departure
from previous versions re”ects changes needed to make use of the capabilities of the

xxi



xxii Preface

latest programmable graphics units (GPUs). These changes are also part of OpenGL
ES 2.0, which is being used to develop applications on mobile devices such as cell
phones and tablets, and WebGL, which is supported on most of the latest browsers.

As the authors of the previous “ve editions of this textbook (EA) and of the
OpenGL Programming GuideandOpenGL ES 2.0 Programming Guide(DS), we were
confronted with a dilemma as to how to react to these changes. We had been writ-
ing books and teaching introductory OpenGL courses at SIGGRAPH for many years.
We found that almost no one in the academic community, or application program-
mers outside the high-end game world, knew about these changes, and those of our
colleagues who did know about them did not think we could teach these concepts
at the beginning level. That was a challenge we couldn•t resist. We started by teach-
ing a half-day short course at SIGGRAPH, which convinced us that we could teach
someone without previous graphics programming experience how to write a non-
trivial shader-based OpenGL application program with just a little more work than
with earlier versions of OpenGL.

As we developed this edition, we discovered some other reasons that convinced
us that this approach is not only possible but even better for students learning com-
puter graphics. Only a short while ago, we touted the advantages OpenGL gave us
by being available for Windows, Linux, and Mac OS X so we could teach a course in
which students could work in the environment they preferred. With OpenGL ES and
WebGL they can now develop applications for their cell phones or Web browsers. We
believe that this will excite both students and instructors about computer graphics
and open up many new educational and commercial opportunities.

We feel that of even greater importance to the learning experience is the removal
of most defaults and the “xed function pipeline in these new versions of OpenGL. At
“rst glance, this removal may seem like it would make teaching a “rst course much
harder. Maybe a little harder; but we contend much better. The tendency of most
students was to rely on these functions and not pay too much attention to what the
textbook and instructor were trying to teach them. Why bother when they could use
built-in functions that did perspective viewing or lighting? Now that those functions
are gone and students have to write their own shaders to do these jobs, they have to
start by understanding the underlying principles and mathematics.

A Top-Down Approach
These recent advances and the success of the “rst “ve editions continue to reinforce
our belief in a top-down, programming-oriented approach to introductory computer
graphics. Although many computer science and engineering departments now sup-
port more than one course in computer graphics, most students will take only a single
course. Such a course is placed in the curriculum after students have already studied
programming, data structures, algorithms, software engineering, and basic mathe-
matics. A class in computer graphics allows the instructor to build on these topics
in a way that can be both informative and fun. We want these students to be pro-
gramming three-dimensional applications as soon as possible. Low-level algorithms,
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such as those that draw lines or “ll polygons, can be dealt with later, after students are
creating graphics.

John Kemeny, a pioneer in computer education, used a familiar automobile
analogy: You don•t have to know what•s under the hood to be literate, but unless
you know how to program, you•ll be sitting in the back seat instead of driving. That
same analogy applies to the way we teach computer graphics. One approach„the
algorithmic approach„is to teach everything about what makes a car function: the
engine, the transmission, the combustion process. A second approach„the survey
approach„is to hire a chauffeur, sit back, and see the world as a spectator. The third
approach„the programming approach that we have adopted here„is to teach you
how to drive and how to take yourself wherever you want to go. As the old auto-rental
commercial used to say, •Let us putyouin the driver•s seat.Ž

Programming with OpenGL and C++
When Ed began teaching computer graphics over 25 years ago, the greatest imped-
iment to implementing a programming-oriented course, and to writing a textbook
for that course, was the lack of a widely accepted graphics library or application pro-
grammer•s interface (API). Dif“culties included high cost, limited availability, lack of
generality, and high complexity. The development of OpenGL resolved most of the
dif“culties many of us had experienced with other APIs (such as GKS and PHIGS)
and with the alternative of using home-brewed software. OpenGL today is supported
on all platforms. It is bundled with Microsoft Windows and Mac OS X. Drivers are
available for virtually all graphics cards. There is also an OpenGL API called Mesa
that is included with most Linux distributions.

A graphics class teaches far more than the use of a particular API, but a good API
makes it easier to teach key graphics topics, including three-dimensional graphics,
lighting and shading, client…server graphics, modeling, and implementation algo-
rithms. We believe that OpenGL•s extensive capabilities and well-de“ned architecture
lead to a stronger foundation for teaching both theoretical and practical aspects of
the “eld and for teaching advanced concepts, including texture mapping, composit-
ing, and programmable shaders.

Ed switched his classes to OpenGL about 15 years ago, and the results astounded
him. By the middle of the semester,everystudent was able to write a moderately com-
plex three-dimensional program that required understanding of three-dimensional
viewing and event-driven input. In previous years of teaching computer graphics, he
had never come even close to this result. That class led to the “rst edition of this book.

This book is a textbook on computer graphics; it is not an OpenGL manual.
Consequently, it does not cover all aspects of the OpenGL API but rather explains
only what is necessary for mastering this book•s contents. It presents OpenGL at a
level that should permit users of other APIs to have little dif“culty with the material.

Unlike previous editions, this one uses C++ rather than C as the dominant
programming language. The reason has to do with the OpenGL Shading Language
(GLSL) used to write shaders, the programs that control the GPU. GLSL is a C-like
language with atomic data types that include vectors and matrices, and overloaded
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basic operators to manipulate them. All the modern versions of OpenGL require ev-
ery application to provide two shaders; hence students need to use these features,
which are supported in C++. By using just this part of C++ (simple classes, con-
structors, overloaded operators), we can implement fundamental graphics concepts,
such as transformations and lighting, in either the application or in a shader with vir-
tually identical code. In addition, using the simple matrix and vector classes that are
provided on the book•s Web site leads to much clearer, shorter code. Students who
have started with Java or C should have little trouble with the code in the book.

Intended Audience
This book is suitable for advanced undergraduates and “rst-year graduate students
in computer science and engineering and for students in other disciplines who have
good programming skills. The book also will be useful to many professionals. Be-
tween us, we have taught well over 100 short courses for professionals; our experi-
ences with these nontraditional students have had a great in”uence on what we have
chosen to include in the book.

Prerequisites for the book are good programming skills in C++, Java, or C;
an understanding of basic data structures (linked lists, trees); and a rudimentary
knowledge of linear algebra and trigonometry. We have found that the mathematical
backgrounds of computer science students, whether undergraduates or graduates,
vary considerably. Hence, we have chosen to integrate into the text much of the linear
algebra and geometry that is required for fundamental computer graphics.

Organization of the Book
The book is organized as follows. Chapter 1 provides an overview of the “eld and in-
troduces image formation by optical devices; thus, we start with three-dimensional
concepts immediately. Chapter 2 introduces programming using OpenGL. Although
the “rst example program that we develop„each chapter has one or more complete
programming examples„is two-dimensional, it is embedded in a three-dimensional
setting and leads to a three-dimensional extension. We also introduce interactive
graphics and develop event-driven graphics programs. Chapters 3 and 4 concentrate
on three-dimensional concepts: Chapter 3 is concerned with de“ning and manipu-
lating three-dimensional objects, whereas Chapter 4 is concerned with viewing them.
Chapter 5 introduces light…material interactions and shading. These chapters should
be covered in order and can be taught in about 10 weeks of a 15-week semester.

The next six chapters can be read in almost any order. All six are somewhat open
ended and can be covered at a survey level, or individual topics can be pursued in
depth. Chapter 6 surveys rasterization. It gives one or two major algorithms for each
of the basic steps, including clipping, line generation, and polygon “ll. Chapter 7 in-
troduces many of the new discrete capabilities that are now supported in graphics
hardware and by OpenGL. All these techniques involve working with various buffers.
It concludes with a short discussion of aliasing problems in computer graphics. Chap-
ters 6 and 7 conclude the discussion of the standard viewing pipeline used by all
interactive graphics systems.
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Chapter 8 contains a number of topics that “t loosely under the heading of
hierarchical modeling. The topics range from building models that encapsulate the
relationships between the parts of a model, to high-level approaches to graphics over
the Internet. It includes an introduction to scene graphs and Open Scene Graph.
Chapter 9 introduces a number of procedural methods, including particle systems,
fractals, and procedural noise. Curves and surfaces, including subdivision surfaces,
are discussed in Chapter 10. Chapter 11 surveys alternate approaches to rendering.
It includes expanded discussions of ray tracing and radiosity, and an introduction to
image-based rendering and parallel rendering.

Programs, primarily from the “rst part of the book, are included in Appendix A.
They are also available online (see Support Materials). Appendices B and C contain
a review of the background mathematics. Appendix D contains a synopsis of the
OpenGL functions used in the book.

Changes from the Fifth Edition
The reaction of readers to the “rst “ve editions of this book was overwhelmingly pos-
itive, especially to the use of OpenGL and the top-down approach. Although each
edition added material to keep up with what was going on in the “eld, the “fth edi-
tion made a major change by introducing programmable shaders and the OpenGL
Shading Language. This material was somewhat optional because the existing ver-
sions of OpenGL were backward compatible. Most instructors chose to focus on the
“rst six chapters and didn•t get to programmable shaders.

As we pointed out at the beginning of this preface, with modern OpenGL, every
application must provide shaders. Most of the basic functions from earlier versions,
including those that speci“ed geometry, transformations, and lighting parameters,
have been deprecated. Consequently, programmable shaders and GLSL need to be in-
troduced in Chapter 2. Many of the examples produce the same output as in previous
editions but the code is very different.

We decided to incorporate the core material on interactivity in Chapter 2 and
eliminate the separate chapter on input and interactivity. Thus, Chapter 2 became a
little longer, but compared to previous editions, we feel that the added material on
programmable shaders will only slightly delay the assignment of a “rst programming
exercise.

Programmable shaders give the application programmer a choice of where to
carry out most of the core graphics functionality. We have reorganized some of the
material so as to be able to show the options together for a particular topic. For
example, carrying out the lighting calculation in the application, in a vertex shader,
and in a fragment shader are all in Chapter 5.

Given the positive feedback we•ve received on the core material from Chapters 1…
6 in previous editions, we•ve tried to keep the changes to those chapters (now Chap-
ters 1…5) to a minimum. We still see Chapters 1…5 as the core of any introductory
course in computer graphics. Chapters 6…11 can be used in almost any order, either
as a survey in a one-semester course or as the basis of a two-semester sequence.



xxvi Preface

Support Materials
The support for the book is on the Web, both through the author•s Web site www.cs
.unm.edu/~angel and Addison-Wesley•s site www.aw.com/cssupport. Support mate-
rial that is available to all readers of this book includes

Sources of information on OpenGL

Instructions on how to get started with OpenGL on the most popular systems

Additional material on writing more robust OpenGL applications

Program code

Solutions to selected exercises

PowerPoint lectures

Figures from the book

Additional support materials, including solutions to all the nonprogramming
exercises, are available only to instructors adopting this textbook for classroom use.
Please contact your school•s Addison-Wesley representative for information on ob-
taining access to this material.
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CHAPTER1
GRAPHICS SYSTEMS
AND MODELS

I t would be dif“cult to overstate the importance of computer and communication
technologies in our lives. Activities as wide-ranging as “lm making, publishing,

banking, and education have undergone revolutionary changes as these technologies
alter the ways in which we conduct our daily activities. The combination of comput-
ers, networks, and the complex human visual system, through computer graphics,
has been instrumental in these advances and has led to new ways of displaying in-
formation, seeing virtual worlds, and communicating with both other people and
machines.

Computer graphicsis concerned with all aspects of producing pictures or im-
ages using a computer. The “eld began humbly 50 years ago, with the display of a few
lines on acathode-ray tube (CRT); now, we can generate images by computer that
are indistinguishable from photographs of real objects. We routinely train pilots with
simulated airplanes, generating graphical displays of a virtual environment in real
time. Feature-length movies made entirely by computer have been successful, both
critically and “nancially.

In this chapter, we start our journey with a short discussion of applications of
computer graphics. Then we overview graphics systems and imaging. Throughout
this book, our approach stresses the relationships between computer graphics and
image formation by familiar methods, such as drawing by hand and photography. We
will see that these relationships can help us to design application programs, graphics
libraries, and architectures for graphics systems.

In this book, we introduce a particular graphics software system,OpenGL, which
has become a widely accepted standard for developing graphics applications. Fortu-
nately, OpenGL is easy to learn, and it possesses most of the characteristics of other
popular graphics systems. Our approach is top-down. We want you to start writing,
as quickly as possible, application programs that will generate graphical output. Af-
ter you begin writing simple programs, we shall discuss how the underlying graphics
library and the hardware are implemented. This chapter should give a suf“cient over-
view for you to proceed to writing programs.

1
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1.1 APPLICATIONS OF COMPUTER GRAPHICS

The development of computer graphics has been driven both by the needs of the user
community and by advances in hardware and software. The applications of computer
graphics are many and varied; we can, however, divide them into four major areas:

1. Display of information

2. Design

3. Simulation and animation

4. User interfaces

Although many applications span two or more of these areas, the development of the
“eld was based on separate work in each.

1.1.1 Display of Information
Classical graphics techniques arose as a medium to convey information among peo-
ple. Although spoken and written languages serve a similar purpose, the human vi-
sual system is unrivaled both as a processor of data and as a pattern recognizer. More
than 4000 years ago, the Babylonians displayed ”oor plans of buildings on stones.
More than 2000 years ago, the Greeks were able to convey their architectural ideas
graphically, even though the related mathematics was not developed until the Re-
naissance. Today, the same type of information is generated by architects, mechanical
designers, and draftspeople using computer-based drafting systems.

For centuries, cartographers have developed maps to display celestial and geo-
graphical information. Such maps were crucial to navigators as these people explored
the ends of the earth; maps are no less important today in “elds such as geographic
information systems. Now, maps can be developed and manipulated in real time over
the Internet.

Over the past 100 years, workers in the “eld of statistics have explored techniques
for generating plots that aid the viewer in determining the information in a set of
data. Now, we have computer plotting packages that provide a variety of plotting
techniques and color tools that can handle multiple large data sets. Nevertheless, it
is still the human•s ability to recognize visual patterns that ultimately allows us to
interpret the information contained in the data. The “eld of information visualiza-
tion is becoming increasingly more important as we have to deal with understanding
complex phenomena from problems in bioinformatics to detecting security threats.

Medical imaging poses interesting and important data-analysis problems. Mod-
ern imaging technologies„such as computed tomography (CT), magnetic resonance
imaging (MRI), ultrasound, and positron-emission tomography (PET)„generate
three-dimensional data that must be subjected to algorithmic manipulation to pro-
vide useful information. Color Plate 20 shows an image of a person•s head in which
the skin is displayed as transparent and the internal structures are displayed as
opaque. Although the data were collected by a medical imaging system, computer
graphics produced the image that shows the structures.
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Supercomputers now allow researchers in many areas to solve previously in-
tractable problems. The “eld of scienti“c visualization provides graphical tools that
help these researchers to interpret the vast quantity of data that they generate. In “elds
such as ”uid ”ow, molecular biology, and mathematics, images generated by conver-
sion of data to geometric entities that can be displayed have yielded new insights into
complex processes. For example, Color Plate 19 shows ”uid dynamics in the mantle
of the earth. The system used a mathematical model to generate the data. We present
various visualization techniques as examples throughout the rest of the text.

1.1.2 Design
Professions such as engineering and architecture are concerned with design. Starting
with a set of speci“cations, engineers and architects seek a cost-effective and esthetic
solution that satis“es the speci“cations. Design is an iterative process. Rarely in the
real world is a problem speci“ed such that there is a unique optimal solution. Design
problems are eitheroverdetermined, such that they possess no solution that satis“es
all the criteria, much less an optimal solution, orunderdetermined, such that they
have multiple solutions that satisfy the design criteria. Thus, the designer works in an
iterative manner. She generates a possible design, tests it, and then uses the results as
the basis for exploring other solutions.

The power of the paradigm of humans interacting with images on the screen
of a CRT was recognized by Ivan Sutherland over 40 years ago. Today, the use of
interactive graphical tools in computer-aided design (CAD) pervades “elds such as
architecture and the design of mechanical parts and of very-large-scale integrated
(VLSI) circuits. In many such applications, the graphics are used in a number of
distinct ways. For example, in a VLSI design, the graphics provide an interactive
interface between the user and the design package, usually by means of such tools
as menus and icons. In addition, after the user produces a possible design, other
tools analyze the design and display the analysis graphically. Color Plates 9 and 10
show two views of the same architectural design. Both images were generated with the
same CAD system. They demonstrate the importance of having the tools available to
generate different images of the same objects at different stages of the design process.

1.1.3 Simulation and Animation
Once graphics systems evolved to be capable of generating sophisticated images in
real time, engineers and researchers began to use them as simulators. One of the most
important uses has been in the training of pilots. Graphical ”ight simulators have
proved both to increase safety and to reduce training expenses. The use of special
VLSI chips has led to a generation of arcade games as sophisticated as ”ight simula-
tors. Games and educational software for home computers are almost as impressive.

The success of ”ight simulators led to the use of computer graphics for anima-
tion in the television, motion-picture, and advertising industries. Entire animated
movies can now be made by computer at a cost less than that of movies made with
traditional hand-animation techniques. The use of computer graphics with hand an-
imation allows the creation of technical and artistic effects that are not possible with
either alone. Whereas computer animations have a distinct look, we can also generate
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photorealistic images by computer. Images that we see on television, in movies, and
in magazines often are so realistic that we cannot distinguish computer-generated
or computer-altered images from photographs. In Chapter 5 we discuss many of the
lighting effects used to produce computer animations. Color Plates 23 and 16 show
realistic lighting effects that were created by artists and computer scientists using an-
imation software. Although these images were created for commercial animations,
interactive software to create such effects is widely available, Color Plate 14 shows
some of the steps used to create an animation. The images in Color Plates 15 and 16
also are realistic renderings.

The “eld of virtual reality (VR) has opened up many new horizons. A human
viewer can be equipped with a display headset that allows her to see separate images
with her right eye and her left eye so that she has the effect of stereoscopic vision. In
addition, her body location and position, possibly including her head and “nger po-
sitions, are tracked by the computer. She may have other interactive devices available,
including force-sensing gloves and sound. She can then act as part of a computer-
generated scene, limited only by the image-generation ability of the computer. For
example, a surgical intern might be trained to do an operation in this way, or an as-
tronaut might be trained to work in a weightless environment. Color Plate 22 shows
one frame of a VR simulation of a simulated patient used for remote training of med-
ical personnel.

Simulation and virtual reality have come together in many exciting ways in the
“lm industry. Recently, stereo (3D) movies have become both pro“table and highly
acclaimed by audiences. Special effects created using computer graphics are part of
virtually all movies, as are more mundane uses of computer graphics such as removal
of artifacts from scenes. Simulations of physics are used to create visual effects ranging
from ”uid ”ow to crowd dynamics.

1.1.4 User Interfaces
Our interaction with computers has become dominated by a visual paradigm that in-
cludes windows, icons, menus, and a pointing device, such as a mouse. From a user•s
perspective, windowing systems such as the X Window System, Microsoft Windows,
and the Macintosh Operating System differ only in details. More recently, millions of
people have become users of the Internet. Their access is through graphical network
browsers, such as Firefox, Chrome, Safari, and Internet Explorer, that use these same
interface tools. We have become so accustomed to this style of interface that we often
forget that what we are doing is working with computer graphics.

Although we are familiar with the style of graphical user interface used on most
workstations,1 advances in computer graphics have made possible other forms of in-

1. Although personal computers and workstations evolved by somewhat different paths, at present,
there is virtually no fundamental difference between them. Hence, we shall use the termspersonal
computerandworkstationsynonymously.
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terfaces. Color Plate 13 shows the interface used with a high-level modeling package.
It demonstrates the variety both of the tools available in such packages and of the
interactive devices the user can employ in modeling geometric objects.

1.2 A GRAPHICS SYSTEM

A computer graphics system is a computer system; as such, it must have all the
components of a general-purpose computer system. Let us start with the high-level
view of a graphics system, as shown in the block diagram in Figure 1.1. There are six
major elements in our system:

1. Input devices

2. Central Processing Unit

3. Graphics Processing Unit

4. Memory

5. Frame buffer

6. Output devices

This model is general enough to include workstations and personal computers,
interactive game systems, mobile phones, GPS systems, and sophisticated image-
generation systems. Although most of the components are present in a standard
computer, it is the way each element is specialized for computer graphics that char-
acterizes this diagram as a portrait of a graphics system.

1.2.1 Pixels and the Frame Buffer
Virtually all modern graphics systems are raster based. The image we see on the out-
put device is an array„theraster„of picture elements, or pixels, produced by the
graphics system. As we can see from Figure 1.2, each pixel corresponds to a location,

Graphics
processor

Central
processor

CPU
Memory

Frame
buffer

GPU
Memory

FIGURE 1.1 A graphics system.
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FIGURE 1.2 Pixels. (a) Image of Yeti the cat. (b) Detail of area around
one eye showing individual pixels.

or small area, in the image. Collectively, the pixels are stored in a part of mem-
ory called theframe buffer. The frame buffer can be viewed as the core element
of a graphics system. Itsresolution„the number of pixels in the frame buffer„
determines the detail that you can see in the image. Thedepth, or precision, of the
frame buffer, de“ned as the number of bits that are used for each pixel, determines
properties such as how many colors can be represented on a given system. For exam-
ple, a 1-bit-deep frame buffer allows only two colors, whereas an 8-bit-deep frame
buffer allows 28 (256) colors. Infull-color systems, there are 24 (or more) bits per
pixel. Such systems can display suf“cient colors to represent most images realistically.
They are also calledtrue-color systems, orRGB-colorsystems, because individual
groups of bits in each pixel are assigned to each of the three primary colors„red,
green, and blue„used in most displays.High dynamic range(HDR) systems use 12
or more bits for each color component. Until recently, frame buffers stored colors in
integer formats. Recent frame buffers use ”oating point and thus support HDR colors
more easily.

In a very simple system, the frame buffer holds only the colored pixels that are
displayed on the screen. In most systems, the frame buffer holds far more informa-
tion, such as depth information needed for creating images from three-dimensional
data. In these systems, the frame buffer comprises multiple buffers, one or more of
which arecolor buffers that hold the colored pixels that are displayed. For now, we
can use the termsframe bufferandcolor buffersynonymously without confusion.

1.2.2 The CPU and the GPU
In a simple system, there may be only one processor, thecentral processing unit
(CPU) of the system, which must do both the normal processing and the graphi-
cal processing. The main graphical function of the processor is to take speci“cations
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of graphical primitives (such as lines, circles, and polygons) generated by application
programs and to assign values to the pixels in the frame buffer that best represent
these entities. For example, a triangle is speci“ed by its three vertices, but to display
its outline by the three line segments connecting the vertices, the graphics system
must generate a set of pixels that appear as line segments to the viewer. The conver-
sion of geometric entities to pixel colors and locations in the frame buffer is known
asrasterization, or scan conversion. In early graphics systems, the frame buffer was
part of the standard memory that could be directly addressed by the CPU. Today, vir-
tually all graphics systems are characterized by special-purposegraphics processing
units (GPUs), custom-tailored to carry out speci“c graphics functions. The GPU can
be either on the mother board of the system or on a graphics card. The frame buffer
is accessed through the graphics processing unit and usually is on the same circuit
board as the GPU.

GPUs have evolved to where they are as complex or even more complex than
CPUs. They are characterized by both special-purpose modules geared toward graph-
ical operations and a high degree of parallelism„recent GPUs contain over 100 pro-
cessing units, each of which is user programmable. GPUs are so powerful that they
can often be used as mini supercomputers for general purpose computing. We will
discuss GPU architectures in more detail in Section 1.7.

1.2.3 Output Devices
Until recently, the dominant type of display (ormonitor ) was thecathode-ray tube
(CRT). A simpli“ed picture of a CRT is shown in Figure 1.3. When electrons strike the
phosphor coating on the tube, light is emitted. The direction of the beam is controlled
by two pairs of de”ection plates. The output of the computer is converted, by digital-
to-analog converters, to voltages across thex andy de”ection plates. Light appears
on the surface of the CRT when a suf“ciently intense beam of electrons is directed at
the phosphor.

y deflect

x deflectElectron gun

Focus

Phosphor

FIGURE 1.3 The cathode-ray tube (CRT).
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If the voltages steering the beam change at a constant rate, the beam will trace
a straight line, visible to a viewer. Such a device is known as therandom-scan,
calligraphic, or vector CRT, because the beam can be moved directly from any
position to any other position. If intensity of the beam is turned off, the beam can
be moved to a new position without changing any visible display. This con“guration
was the basis of early graphics systems that predated the present raster technology.

A typical CRT will emit light for only a short time„usually, a few milliseconds„
after the phosphor is excited by the electron beam. For a human to see a steady,
”icker-free image on most CRT displays, the same path must be retraced, orre-
freshed, by the beam at a suf“ciently high rate, therefresh rate. In older systems,
the refresh rate is determined by the frequency of the power system, 60 cycles per sec-
ond or 60 Hertz (Hz) in the United States and 50 Hz in much of the rest of the world.
Modern displays are no longer coupled to these low frequencies and operate at rates
up to about 85 Hz.

In a raster system, the graphics system takes pixels from the frame buffer and
displays them as points on the surface of the display in one of two fundamental
ways. In anoninterlacedsystem, the pixels are displayed row by row, or scan line
by scan line, at the refresh rate. In aninterlaced display, odd rows and even rows
are refreshed alternately. Interlaced displays are used in commercial television. In an
interlaced display operating at 60 Hz, the screen is redrawn in its entirety only 30
times per second, although the visual system is tricked into thinking the refresh rate
is 60 Hz rather than 30 Hz. Viewers located near the screen, however, can tell the
difference between the interlaced and noninterlaced displays. Noninterlaced displays
are becoming more widespread, even though these displays process pixels at twice the
rate of the interlaced display.

Color CRTs have three different colored phosphors (red, green, and blue), ar-
ranged in small groups. One common style arranges the phosphors in triangular
groups calledtriads, each triad consisting of three phosphors, one of each primary.
Most color CRTs have three electron beams, corresponding to the three types of phos-
phors. In the shadow-mask CRT (Figure 1.4), a metal screen with small holes„the
shadow mask„ensures that an electron beam excites only phosphors of the proper
color.

Although CRTs are still common display devices, they are rapidly being replaced
by ”at-screen technologies. Flat-panel monitors are inherently raster based. Although
there are multiple technologies available, including light-emitting diodes (LEDs),
liquid-crystal displays (LCDs), and plasma panels, all use a two-dimensional grid
to address individual light-emitting elements. Figure 1.5 shows a generic ”at-panel
monitor. The two outside plates each contain parallel grids of wires that are oriented
perpendicular to each other. By sending electrical signals to the proper wire in each
grid, the electrical “eld at a location, determined by the intersection of two wires, can
be made strong enough to control the corresponding element in the middle plate.
The middle plate in an LED panel contains light-emitting diodes that can be turned
on and off by the electrical signals sent to the grid. In an LCD display, the electrical
“eld controls the polarization of the liquid crystals in the middle panel, thus turning
on and off the light passing through the panel. A plasma panel uses the voltages on
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FIGURE 1.4 Shadow-mask CRT.

Horizontal grid
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Light emitting elements

FIGURE 1.5 Generic flat-panel display.

the grids to energize gases embedded between the glass panels holding the grids. The
energized gas becomes a glowing plasma.

Most projection systems are also raster devices. These systems use a variety of
technologies, including CRTs and digital light projection (DLP). From a user perspec-
tive, they act as standard monitors with similar resolutions and precisions. Hard-copy
devices, such as printers and plotters, are also raster based but cannot be refreshed.

1.2.4 Input Devices
Most graphics systems provide a keyboard and at least one other input device. The
most common input devices are the mouse, the joystick, and the data tablet. Each
provides positional information to the system, and each usually is equipped with one
or more buttons to provide signals to the processor. Often calledpointing devices,
these devices allow a user to indicate a particular location on the display.

Modern systems, such as game consoles, provide a much richer set of input
devices, with new devices appearing almost weekly. In addition, there are devices
which provide three- (and more) dimensional input. Consequently, we want to pro-
vide a ”exible model for incorporating the input from such devices into our graphics
programs.
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We can think about input devices in two distinct ways. The obvious one is to look
at them as physical devices, such as a keyboard or a mouse, and to discuss how they
work. Certainly, we need to know something about the physical properties of our in-
put devices, so such a discussion is necessary if we are to obtain a full understanding
of input. However, from the perspective of an application programmer, we should not
need to know the details of a particular physical device to write an application pro-
gram. Rather, we prefer to treat input devices aslogicaldevices whose properties are
speci“ed in terms of what they do from the perspective of the application program. A
logical deviceis characterized by its high-level interface with the user program rather
than by its physical characteristics. Logical devices are familiar to all writers of high-
level programs. For example, data input and output in C are done through functions
such asprintf , scanf , getchar , andputchar , whose arguments use the standard
C data types, and through input (cin ) and output (cout ) streams in C++. When we
output a string usingprintf , the physical device on which the output appears could
be a printer, a terminal, or a disk “le. This output could even be the input to another
program. The details of the format required by the destination device are of minor
concern to the writer of the application program.

In computer graphics, the use of logical devices is slightly more complex because
the forms that input can take are more varied than the strings of bits or characters
to which we are usually restricted in nongraphical applications. For example, we can
use the mouse„a physical device„either to select a location on the screen of our
CRT or to indicate which item in a menu we wish to select. In the “rst case, anx, y
pair (in some coordinate system) is returned to the user program; in the second, the
application program may receive an integer as the identi“er of an entry in the menu.
The separation of physical from logical devices allows us to use the same physical
devices in multiple markedly different logical ways. It also allows the same program
to work, without modi“cation, if the mouse is replaced by another physical device,
such as a data tablet or trackball.

1.2.5 Physical Input Devices
From the physical perspective, each input device has properties that make it more
suitable for certain tasks than for others. We take the view used in most of the work-
station literature that there are two primary types of physical devices: pointing devices
and keyboard devices. Thepointing deviceallows the user to indicate a position on
the screen and almost always incorporates one or more buttons to allow the user to
send signals or interrupts to the computer. Thekeyboard deviceis almost always a
physical keyboard but can be generalized to include any device that returns character
codes. We use the American Standard Code for Information Interchange (ASCII) in
our examples. ASCII assigns a single unsigned byte to each character. Nothing we do
restricts us to this particular choice, other than that ASCII is the prevailing code used.
Note, however, that other codes, especially those used for Internet applications, use
multiple bytes for each character, thus allowing for a much richer set of supported
characters.
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FIGURE 1.6 Mouse.

FIGURE 1.7 Trackball.

The mouse (Figure 1.6) and trackball (Figure 1.7) are similar in use and often
in construction as well. A typical mechanical mouse when turned over looks like a
trackball. In both devices, the motion of the ball is converted to signals sent back to
the computer by pairs of encoders inside the device that are turned by the motion of
the ball. The encoders measure motion in two orthogonal directions.

There are many variants of these devices. Some use optical detectors rather than
mechanical detectors to measure motion. Small trackballs are popular with portable
computers because they can be incorporated directly into the keyboard. There are
also various pressure-sensitive devices used in keyboards that perform similar func-
tions to the mouse and trackball but that do not move; their encoders measure the
pressure exerted on a small knob that often is located between two keys in the middle
of the keyboard.

We can view the output of the mouse or trackball as two independent values
provided by the device. These values can be considered as positions and converted„
either within the graphics system or by the user program„to a two-dimensional
location in a convenient coordinate system. If it is con“gured in this manner, we can
use the device to position a marker (cursor) automatically on the display; however,
we rarely use these devices in this direct manner.

It is not necessary that the output of the mouse or trackball encoders be inter-
preted as a position. Instead, either the device driver or a user program can interpret
the information from the encoder as two independent velocities. The computer can
then integrate these values to obtain a two-dimensional position. Thus, as a mouse
moves across a surface, the integrals of the velocities yieldx, y values that can be con-
verted to indicate the position for a cursor on the screen, as shown in Figure 1.8.
By interpreting the distance traveled by the ball as a velocity, we can use the device
as a variable-sensitivity input device. Small deviations from rest cause slow or small
changes; large deviations cause rapid large changes. With either device, if the ball does
not rotate, then there is no change in the integrals and a cursor tracking the posi-
tion of the mouse will not move. In this mode, these devices arerelative-positioning
devices because changes in the position of the ball yield a position in the user pro-
gram; the absolute location of the ball (or the mouse) is not used by the application
program.

Relative positioning, as provided by a mouse or trackball, is not always desirable.
In particular, these devices are not suitable for an operation such as tracing a diagram.
If, while the user is attempting to follow a curve on the screen with a mouse, she
lifts and moves the mouse, the absolute position on the curve being traced is lost.

�
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�

x

y

FIGURE 1.8 Cursor positioning.
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FIGURE 1.9 Data tablet.

FIGURE 1.10 Joystick.

FIGURE 1.11 Spaceball.

Data tabletsprovide absolute positioning. A typical data tablet (Figure 1.9) has rows
and columns of wires embedded under its surface. The position of the stylus is
determined through electromagnetic interactions between signals traveling through
the wires and sensors in the stylus. Touch-sensitive transparent screens that can be
placed over the face of a CRT have many of the same properties as the data tablet.
Small, rectangular, pressure-sensitive touchpads are embedded in the keyboards of
many portable computers. These touchpads can be con“gured as either relative- or
absolute-positioning devices.

One other device, thejoystick (Figure 1.10), is particularly worthy of mention.
The motion of the stick in two orthogonal directions is encoded, interpreted as two
velocities, and integrated to identify a screen location. The integration implies that if
the stick is left in its resting position, there is no change in the cursor position and that
the farther the stick is moved from its resting position, the faster the screen location
changes. Thus, the joystick is a variable-sensitivity device. The other advantage of
the joystick is that the device can be constructed with mechanical elements, such as
springs and dampers, that give resistance to a user who is pushing the stick. Such a
mechanical feel, which is not possible with the other devices, makes the joystick well
suited for applications such as ”ight simulators and games.

For three-dimensional graphics, we might prefer to use three-dimensional in-
put devices. Although various such devices are available, none have yet won the
widespread acceptance of the popular two-dimensional input devices. Aspaceball
looks like a joystick with a ball on the end of the stick (Figure 1.11); however, the
stick does not move. Rather, pressure sensors in the ball measure the forces applied
by the user. The spaceball can measure not only the three direct forces (up…down,
front…back, left…right) but also three independent twists. The device measures six in-
dependent values and thus has sixdegrees of freedom. Such an input device could be
used, for example, both to position and to orient a camera.

The Nintendo Wiimote provides three-dimensional position and orientation of
a hand-held device by sending infrared light to the device, which then sends back
what it measures wirelessly to the host computer.

Other three-dimensional devices, such as laser-based structured-lighting systems
and laser-ranging systems, measure three-dimensional positions. Numerous tracking
systems used in virtual reality applications sense the position of the user. Virtual
reality and robotics applications often need more degrees of freedom than the 2 to
6 provided by the devices that we have described. Devices such as data gloves can
sense motion of various parts of the human body, thus providing many additional
input signals.

1.2.6 Logical Devices
We can now return to looking at input from inside the application program„that is,
from the logical point of view. Two major characteristics describe the logical behavior
of an input device: (1) the measurements that the device returns to the user program
and (2) the time when the device returns those measurements.
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The logicalstring device is the same as the use of character input throughscanf
or cin . A physical keyboard will return a string of characters to an application pro-
gram; the same string might be provided from a “le or the user may see a keyboard
displayed on the output and use the pointing device to generate the string of charac-
ters. Logically, all three methods are examples of a string device, and application code
for using such input can be the same regardless of which physical device is used.

The physical pointing device can be used in a variety of logical ways. As alocator
it can provide a position to the application in either a device-independent coordinate
system, such as world coordinates, as in OpenGL, or in screen coordinates, which the
application can then transform to another coordinate system. A logicalpick device
returns the identi“er of an object on the display to the application program. It is
usually implemented with the same physical device as a locator but has a separate
software interface to the user program.

A widget is a graphical interactive device, provided by either the window system
or a toolkit. Typical widgets include menus, scrollbars, and graphical buttons. Most
widgets are implemented as special types of windows. Widgets can be used to provide
additional types of logical devices. For example, a menu provides one of a number of
choicesas may a row of graphical buttons. A logicalvaluator provides analog input
to the user program, usually through a widget such as a slidebar, although the same
logical input could be provided by a user typing numbers into a physical keyboard.

1.2.7 Input Modes
Besides the variety of types of input that characterize computer graphics, how the
input is provided to the application is more varied than with simple C and C++
programs that use only a keyboard. The manner by which physical and logical input
devices provide input to an application program can be described in terms of two
entities: a measure process and a device trigger. Themeasureof a device is what the
device returns to the user program. Thetrigger of a device is a physical input on
the device with which the user can signal the computer. For example, the measure of
a keyboard contains a string, and the trigger can be the Return or Enter key. For a
locator, the measure includes the position, and the associated trigger can be a button
on the pointing device.

We can obtain the measure of a device in three distinct modes. Each mode is
de“ned by the relationship between the measure process and the trigger. Once the
measure process is started, the measure is taken and placed in a buffer, even though
the contents of the buffer may not yet be available to the program. For example,
the position of a mouse is tracked continuously by the underlying window system,
regardless of whether the application program needs mouse input.

In request mode, the measure of the device is not returned to the program until
the device is triggered. This input mode is standard in nongraphical applications. For
example, if a typical C program requires character input, we use a function such as
scanf . When the program needs the input, it halts when it encounters thescanf
statement and waits while we type characters at our terminal. We can backspace



14 Chapter 1 Graphics Systems and Models

to correct our typing, and we can take as long as we like. The data are placed in a
keyboard buffer, whose contents are returned to our program only after a particular
key, such as the Enter key (the trigger), is depressed. For a logical device, such as a
locator, we can move our pointing device to the desired location and then trigger
the device with its button; the trigger will cause the location to be returned to the
application program.

Sample-modeinput is immediate. As soon as the function call in the application
program is encountered, the measure is returned. In sample mode, the user must have
positioned the pointing device or entered data using the keyboard before the function
call, because the measure is extracted immediately from the buffer.

One characteristic of both request- and sample-mode input in APIs that support
them is that the user must identify which device is to provide the input. Consequently,
we ignore any other information that becomes available from any input device other
than the one speci“ed. Both request and sample modes are useful for situations where
the program guides the user, but they are not useful in applications where the user
controls the ”ow of the program. For example, a ”ight simulator or computer game
might have multiple input devices„such as a joystick, dials, buttons, and switches„
most of which can be used at any time. Writing programs to control the simulator
with only sample- and request-mode input is nearly impossible, because we do not
know what devices the pilot will use at any point in the simulation. More generally,
sample- and request-mode input are not suf“cient for handling the variety of possible
human…computer interactions that arise in a modern computing environment.

Our third mode,event mode, can handle these other interactions. Suppose that
we are in an environment with multiple input devices, each with its own trigger
and each running a measure process. Each time that a device is triggered, anevent
is generated. The device measure, including the identi“er for the device, is placed
in an event queue. This process of placing events in the event queue is completely
independent of what the application program does with these events. One way that
the application program can work with events is shown in Figure 1.12. The user
program can examine the front event in the queue or, if the queue is empty, can wait
for an event to occur. If there is an event in the queue, the program can look at the
event•s type and then decide what to do.

Another approach is to associate a function called acallbackwith a speci“c type
of event. From the perspective of the window system, the operating system queries or
polls the event queue regularly and executes the callbacks corresponding to events in
the queue. We take this approach because it is the one currently used with the major
window systems and has proved effective in client…server environments.

Event
queue Program

Measure
process

Measure Event

Await
Trigger
process

Trigger

FIGURE 1.12 Event-mode model.
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1.3 IMAGES: PHYSICAL AND SYNTHETIC

For many years, the pedagogical approach to teaching computer graphics started with
how to construct raster images of simple two-dimensional geometric entities (for
example, points, line segments, and polygons) in the frame buffer. Next, most text-
books discussed how to de“ne two- and three-dimensional mathematical objects in
the computer and image them with the set of two-dimensional rasterized primitives.

This approach worked well for creating simple images of simple objects. In mod-
ern systems, however, we want to exploit the capabilities of the software and hardware
to create realistic images of computer-generated three-dimensional objects„a task
that involves many aspects of image formation, such as lighting, shading, and prop-
erties of materials. Because such functionality is supported directly by most present
computer graphics systems, we prefer to set the stage for creating these images here,
rather than to expand a limited model later.

Computer-generated images are synthetic or arti“cial, in the sense that the ob-
jects being imaged do not exist physically. In this chapter, we argue that the preferred
method to form computer-generated images is similar to traditional imaging meth-
ods, such as cameras and the human visual system. Hence, before we discuss the
mechanics of writing programs to generate images, we discuss the way images are
formed by optical systems. We construct a model of the image-formation process that
we can then use to understand and develop computer-generated imaging systems.

In this chapter, we make minimal use of mathematics. We want to establish a par-
adigm for creating images and to present a computer architecture for implementing
that paradigm. Details are presented in subsequent chapters, where we shall derive
the relevant equations.

1.3.1 Objects and Viewers
We live in a world of three-dimensional objects. The development of many branches
of mathematics, including geometry and trigonometry, was in response to the de-
sire to systematize conceptually simple ideas, such as the measurement of size of
objects and distance between objects. Often, we seek to represent our understand-
ing of such spatial relationships with pictures or images, such as maps, paintings,
and photographs. Likewise, the development of many physical devices„including
cameras, microscopes, and telescopes„was tied to the desire to visualize spatial re-
lationships among objects. Hence, there always has been a fundamental link between
the physics and the mathematics of image formation„one that we can exploit in our
development of computer image formation.

Two basic entities must be part of any image-formation process, be it mathe-
matical or physical:objectandviewer. The object exists in space independent of any
image-formation process and of any viewer. In computer graphics, where we deal
with synthetic objects, we form objects by specifying the positions in space of various
geometric primitives, such as points, lines, and polygons. In most graphics systems,
a set of locations in space, or ofvertices, is suf“cient to de“ne, or approximate, most
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FIGURE 1.13 Image seen by three different viewers. (a) A•s view. (b) B•s
view. (c) C•s view.

FIGURE 1.14 Camera system.

objects. For example, a line can be speci“ed by two vertices; a polygon can be spec-
i“ed by an ordered list of vertices; and a sphere can be speci“ed by two vertices that
specify its center and any point on its circumference. One of the main functions of
a CAD system is to provide an interface that makes it easy for a user to build a syn-
thetic model of the world. In Chapter 2, we show how OpenGL allows us to build
simple objects; in Chapter 8, we learn to de“ne objects in a manner that incorporates
relationships among objects.

Every imaging system must provide a means of forming images from objects.
To form an image, we must have someone or something that is viewing our objects,
be it a human, a camera, or a digitizer. It is theviewer that forms the image of our
objects. In the human visual system, the image is formed on the back of the eye. In a
camera, the image is formed in the “lm plane. It is easy to confuse images and objects.
We usually see an object from our single perspective and forget that other viewers,
located in other places, will see the same object differently. Figure 1.13(a) shows two
viewers observing the same building. This image is what is seen by an observer A
who is far enough away from the building to see both the building and the two other
viewers, B and C. From A•s perspective, B and C appear as objects, just as the building
does. Figures 1.13(b) and (c) show the images seen by B and C, respectively. All three
images contain the same building, but the image of the building is different in all
three.

Figure 1.14 shows a camera system viewing a building. Here we can observe that
both the object and the viewer exist in a three-dimensional world. However, the im-
age that they de“ne„what we “nd on the projection plane„is two-dimensional. The
process by which the speci“cation of the object is combined with the speci“cation of
the viewer to produce a two-dimensional image is the essence of image formation,
and we shall study it in detail.

1.3.2 Light and Images
The preceding description of image formation is far from complete. For example, we
have yet to mention light. If there were no light sources, the objects would be dark,
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FIGURE 1.15 A camera system with an object and a light source.

and there would be nothing visible in our image. Nor have we indicated how color
enters the picture or what the effects of the surface properties of the objects are.

Taking a more physical approach, we can start with the arrangement in Fig-
ure 1.15, which shows a simple physical imaging system. Again, we see a physical
object and a viewer (the camera); now, however, there is a light source in the scene.
Light from the source strikes various surfaces of the object, and a portion of the re-
”ected light enters the camera through the lens. The details of the interaction between
light and the surfaces of the object determine how much light enters the camera.

Light is a form of electromagnetic radiation. Taking the classical view, we look
at electromagnetic energy travels as waves2 that can be characterized by either their
wavelengths or their frequencies.3 The electromagnetic spectrum (Figure 1.16) in-
cludes radio waves, infrared (heat), and a portion that causes a response in our visual
systems. Thisvisible spectrum, which has wavelengths in the range of 350 to 780
nanometers (nm), is called (visible)light. A given light source has a color determined
by the energy that it emits at various wavelengths. Wavelengths in the middle of the
range, around 520 nm, are seen as green; those near 450 nm are seen as blue; and
those near 650 nm are seen as red. Just as with a rainbow, light at wavelengths be-
tween red and green, we see as yellow, and wavelengths shorter than blue generate
violet light.

Light sources can emit light either as a set of discrete frequencies or continuously.
A laser, for example, emits light at a single frequency, whereas an incandescent lamp
emits energy over a range of frequencies. Fortunately, in computer graphics, except
for recognizing that distinct frequencies are visible as distinct colors, we rarely need
to deal with the physical properties of light.

2. In Chaper 11, we will introduce photon mapping that is based on light being emitted in discrete
packets.
3. The relationship between frequency(f ) and wavelength(�) isf � = c, wherecis the speed of light.
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FIGURE 1.16 The electromagnetic spectrum.

Instead, we can follow a more traditional path that is correct when we are operat-
ing with suf“ciently high light levels and at a scale where the wave nature of light is not
a signi“cant factor.Geometric opticsmodels light sources as emitters of light energy,
each of which have a “xed intensity. Modeled geometrically, light travels in straight
lines, from the sources to those objects with which it interacts. An idealpoint source
emits energy from a single location at one or more frequencies equally in all direc-
tions. More complex sources, such as a light bulb, can be characterized as emitting
light over an area and by emitting more light in one direction than another. A partic-
ular source is characterized by the intensity of light that it emits at each frequency and
by that light•s directionality. We consider only point sources for now. More complex
sources often can be approximated by a number of carefully placed point sources.
Modeling of light sources is discussed in Chapter 5.

1.3.3 Imaging Models
There are multiple approaches to how we can form images from a set of objects,
the light-re”ecting properties of these objects, and the properties of the light sources
in the scene. In this section, we introduce two physical approaches. Although these
approaches are not suitable for the real-time graphics that we ultimately want, they
will give us some insight into how we can build a useful imaging architecture. We
return to these approaches in Chapter 11.

We can start building an imaging model by following light from a source. Con-
sider the scene in Figure 1.17; it is illuminated by a single point source. We include
the viewer in the “gure because we are interested in the light that reaches her eye.
The viewer can also be a camera, as shown in Figure 1.18. Aray is a semi-in“nite line
that emanates from a point and travels to in“nity in a particular direction. Because
light travels in straight lines, we can think in terms of rays of light emanating in all
directions from our point source. A portion of these in“nite rays contributes to the
image on the “lm plane of our camera. For example, if the source is visible from the
camera, some of the rays go directly from the source through the lens of the camera
and strike the “lm plane. Most rays, however, go off to in“nity, neither entering the
camera directly nor striking any of the objects. These rays contribute nothing to the
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FIGURE 1.17 Scene with a single point light source.
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FIGURE 1.18 Ray interactions. Ray A enters camera directly. Ray B
goes off to infinity. Ray C is reflected by a mirror. Ray D goes through a
transparent sphere.

image, although they may be seen by some other viewer. The remaining rays strike
and illuminate objects. These rays can interact with the objects• surfaces in a variety
of ways. For example, if the surface is a mirror, a re”ected ray might„depending on
the orientation of the surface„enter the lens of the camera and contribute to the im-
age. Other surfaces scatter light in all directions. If the surface is transparent, the light
ray from the source can pass through it and may interact with other objects, enter the
camera, or travel to in“nity without striking another surface. Figure 1.18 shows some
of the possibilities.
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Ray tracingandphotonmappingare image-formation techniques that are based
on these ideas and that can form the basis for producing computer-generated images.
We can use the ray-tracing idea to simulate physical effects as complex as we wish, as
long as we are willing to carry out the requisite computing. Although tracing rays can
provide a close approximation to the physical world, it is usually not well suited for
real-time computation.

Other physical approaches to image formation are based on conservation of
energy. The most important in computer graphics isradiosity. This method works
best for surfaces that scatter the incoming light equally in all directions. Even in this
case, radiosity requires more computation than can be done in real time. We defer
discussion of these techniques until Chapter 11.

1.4 IMAGING SYSTEMS

We now introduce two imaging systems: the pinhole camera and the human visual
system. The pinhole camera is a simple example of an imaging system that will enable
us to understand the functioning of cameras and of other optical imagers. We emu-
late it to build a model of image formation. The human visual system is extremely
complex but still obeys the physical principles of other optical imaging systems. We
introduce it not only as an example of an imaging system but also because under-
standing its properties will help us to exploit the capabilities of computer-graphics
systems.

1.4.1 The Pinhole Camera
The pinhole camera in Figure 1.19 provides an example of image formation that we
can understand with a simple geometric model. Apinhole camerais a box with a
small hole in the center of one side of the box; the “lm is placed inside the box on
the side opposite the pinhole. Suppose that we orient our camera along thez-axis,
with the pinhole at the origin of our coordinate system. We assume that the hole is
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FIGURE 1.19 Pinhole camera.
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FIGURE 1.20 Side view of pinhole camera.

so small that only a single ray of light, emanating from a point, can enter it. The “lm
plane is located a distanced from the pinhole. A side view (Figure 1.20) allows us to
calculate where the image of the point(x, y, z) is on the “lm planez = Š d. Using the
fact that the two triangles in Figure 1.20 are similar, we “nd that they coordinate of
the image is atyp, where

yp = Š
y

z/ d
.

A similar calculation, using a top view, yields

xp = Š
x

z/ d
.

The point(xp, yp, Šd) is called theprojection of the point(x, y, z). In our idealized
model, the color on the “lm plane at this point will be the color of the point(x, y, z).
The“eld , or angle, of viewof our camera is the angle made by the largest object that
our camera can image on its “lm plane. We can calculate the “eld of view with the
aid of Figure 1.21.4 If h is the height of the camera, the angle of view� is

� = 2 tanŠ1 h
2d

.

The ideal pinhole camera has an in“nitedepth of “eld: Every point within its “eld
of view is in focus. Every point in its “eld of view projects to a point on the back of
the camera. The pinhole camera has two disadvantages. First, because the pinhole is
so small„it admits only a single ray from a point source„almost no light enters the
camera. Second, the camera cannot be adjusted to have a different angle of view.

4. If we consider the problem in three, rather than two, dimensions, then the diagonal length of the
“lm will substitute for h.
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FIGURE 1.21 Angle of view.
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The jump to more sophisticated cameras and to other imaging systems that have
lenses is a small one. By replacing the pinhole with a lens, we solve the two problems
of the pinhole camera. First, the lens gathers more light than can pass through the
pinhole. The larger the aperture of the lens, the more light the lens can collect.
Second, by picking a lens with the proper focal length„a selection equivalent to
choosingd for the pinhole camera„we can achieve any desired angle of view (up to
180 degrees). Lenses, however, do not have an in“nite depth of “eld: Not all distances
from the lens are in focus.

For our purposes, in this chapter we can work with a pinhole camera whose focal
length is the distanced from the front of the camera to the “lm plane. Like the pinhole
camera, computer graphics produces images in which all objects are in focus.

1.4.2 The Human Visual System
Our extremely complex visual system has all the components of a physical imaging
system, such as a camera or a microscope. The major components of the visual
system are shown in Figure 1.22. Light enters the eye through the lens and cornea,
a transparent structure that protects the eye. The iris opens and closes to adjust the
amount of light entering the eye. The lens forms an image on a two-dimensional
structure called theretina at the back of the eye. The rods and cones (so named
because of their appearance when magni“ed) are light sensors and are located on
the retina. They are excited by electromagnetic energy in the range of 350 to 780 nm.

The rods are low-level-light sensors that account for our night vision and are not
color sensitive; the cones are responsible for our color vision. The sizes of the rods
and cones, coupled with the optical properties of the lens and cornea, determine the
resolutionof our visual systems, or ourvisualacuity. Resolution is a measure of what
size objects we can see. More technically, it is a measure of how close we can place two
points and still recognize that there are two distinct points.

The sensors in the human eye do not react uniformly to light energy at different
wavelengths. There are three types of cones and a single type of rod. Whereas intensity
is a physical measure of light energy,brightness is a measure of how intense we
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perceive the light emitted from an object to be. The human visual system does not
have the same response to a monochromatic (single-frequency) red light as to a
monochromatic green light. If these two lights were to emit the same energy, they
would appear to us to have different brightness, because of the unequal response
of the cones to red and green light. We are most sensitive to green light, and least
sensitive to red and blue.

Brightness is an overall measure of how we react to the intensity of light. Human
color-vision capabilities are due to the different sensitivities of the three types of
cones. The major consequence of having three types of cones is that instead of having
to work with all visible wavelengths individually, we can use three standard primaries
to approximate any color that we can perceive. Consequently, most image-production
systems, including “lm and video, work with just three basic, orprimary, colors. We
discuss color in depth in Chapter 2.

The initial processing of light in the human visual system is based on the same
principles used by most optical systems. However, the human visual system has a
back end much more complex than that of a camera or telescope. The optic nerves
are connected to the rods and cones in an extremely complex arrangement that has
many of the characteristics of a sophisticated signal processor. The “nal processing
is done in a part of the brain called the visual cortex, where high-level functions,
such as object recognition, are carried out. We shall omit any discussion of high-level
processing; instead, we can think simply in terms of an image that is conveyed from
the rods and cones to the brain.

1.5 THE SYNTHETIC-CAMERA MODEL

Our models of optical imaging systems lead directly to the conceptual foundation
for modern three-dimensional computer graphics. We look at creating a computer-
generated image as being similar to forming an image using an optical system. This
paradigm has become known as thesynthetic-camera model. Consider the imaging
system shown in Figure 1.23. We again see objects and a viewer. In this case, the viewer
is a bellows camera.5 The image is formed on the “lm plane at the back of the camera.
So that we can emulate this process to create arti“cial images, we need to identify a
few basic principles.

First, the speci“cation of the objects is independent of the speci“cation of the
viewer. Hence, we should expect that, within a graphics library, there will be separate
functions for specifying the objects and the viewer.

Second, we can compute the image using simple geometric calculations, just as
we did with the pinhole camera. Consider the side view of the camera and a simple
object in Figure 1.24. The view in part (a) of the “gure is similar to that of the

5. In a bellows camera, the front plane of the camera, where the lens is located, and the back of the
camera, the “lm plane, are connected by ”exible sides. Thus, we can move the back of the camera
independently of the front of the camera, introducing additional ”exibility in the image-formation
process. We use this ”exibility in Chapter 4.
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FIGURE 1.23 Imaging system.

(y, z)

Object

Camera

COP

Projector

(a) (b)

(yp, …d)

(yp, d)
(y, z)

z

yy

z

FIGURE 1.24 Equivalent views of image formation. (a) Image formed on
the back of the camera. (b) Image plane moved in front of the camera.

pinhole camera. Note that the image of the object is ”ipped relative to the object.
Whereas with a real camera we would simply ”ip the “lm to regain the original
orientation of the object, with our synthetic camera we can avoid the ”ipping by a
simple trick. We draw another plane in front of the lens (Figure 1.24(b)) and work in
three dimensions, as shown in Figure 1.25. We “nd the image of a point on the object
on the virtual image plane by drawing a line, called aprojector, from the point to
the center of the lens, or thecenter of projection (COP). Note that all projectors
are rays emanating from the center of projection. In our synthetic camera, the virtual
image plane that we have moved in front of the lens is called theprojectionplane. The
image of the point is located where the projector passes through the projection plane.
In Chapter 4, we discuss this process in detail and derive the relevant mathematical
formulas.

We must also consider the limited size of the image. As we saw, not all objects
can be imaged onto the pinhole camera•s “lm plane. The angle of view expresses this
limitation. In the synthetic camera, we can move this limitation to the front by plac-
ing aclipping rectangle, or clipping window, in the projection plane (Figure 1.26).
This rectangle acts as a window, through which a viewer, located at the center of pro-
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FIGURE 1.25 Imaging with the synthetic camera.

(a) (b)

FIGURE 1.26 Clipping. (a) Window in initial position. (b) Window shifted.

jection, sees the world. Given the location of the center of projection, the location
and orientation of the projection plane, and the size of the clipping rectangle, we can
determine which objects will appear in the image.

1.6 THE PROGRAMMER•S INTERFACE

There are numerous ways that a user can interact with a graphics system. With
completely self-contained packages, such as those used in the CAD community, a
user develops images through interactions with the display using input devices, such
as a mouse and a keyboard. In a typical application, such as the painting program in
Figure 1.27, the user sees menus and icons that represent possible actions. By clicking
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FIGURE 1.29 Pen plotter.

(a)

(b)

FIGURE 1.30 Output of pen-
plotter program for (a) a
square, and (b) a projection
of a cube.

1.6.1 The Pen-Plotter Model
Historically, most early graphics systems were two-dimensional systems. The concep-
tual model that they used is now referred to as thepen-plotter model, referencing the
output device that was available on these systems. Apen plotter (Figure 1.29) pro-
duces images by moving a pen held by a gantry, a structure that can move the pen in
two orthogonal directions across the paper. The plotter can raise and lower the pen as
required to create the desired image. Pen plotters are still in use; they are well suited
for drawing large diagrams, such as blueprints. Various APIs„such as LOGO and
PostScript„have their origins in this model. Although they differ from one another,
they have a common view of the process of creating an image as being similar to the
process of drawing on a pad of paper. The user works on a two-dimensional surface
of some size. She moves a pen around on this surface, leaving an image on the paper.

We can describe such a graphics system with two drawing functions:

moveto(x,y);
lineto(x,y);

Execution of themovetofunction moves the pen to the location(x, y) on the paper
without leaving a mark. Thelineto function moves the pen to(x, y) and draws a
line from the old to the new location of the pen. Once we add a few initialization
and termination procedures, as well as the ability to change pens to alter the drawing
color or line thickness, we have a simple„but complete„graphics system. Here is a
fragment of a simple program in such a system:

moveto(0, 0);
lineto(1, 0);
lineto(1, 1);
lineto(0, 1);
lineto(0, 0);

This fragment would generate the output in Figure 1.30(a). If we added the code

moveto(0, 1);
lineto(0.5, 1.866);
lineto(1.5, 1.866);
lineto(1.5, 0.866);
lineto(1, 0);
moveto(1, 1);
lineto(1.5, 1.866);

we would have the image of a cube formed by an oblique projection, as is shown in
Figure 1.30(b).

For certain applications, such as page layout in the printing industry, systems
built on this model work well. For example, the PostScript page-description language,
a sophisticated extension of these ideas, is a standard for controlling typesetters and
printers.
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An alternate raster-based, but still limiting, two-dimensional model relies on
writing pixels directly into a frame buffer. Such a system could be based on a single
function of the form

write_pixel(x, y, color);

wherex,y is the location of the pixel in the frame buffer andcolor gives the color
to be written there. Such models are well suited to writing the algorithms for rasteri-
zation and processing of digital images.

We are much more interested, however, in the three-dimensional world. The
pen-plotter model does not extend well to three-dimensional graphics systems. For
example, if we wish to use the pen-plotter model to produce the image of a three-
dimensional object on our two-dimensional pad, either by hand or by computer, then
we have to “gure out where on the page to place two-dimensional points correspond-
ing to points on our three-dimensional object. These two-dimensional points are,
as we saw in Section 1.5, the projections of points in three-dimensional space. The
mathematical process of determining projections is an application of trigonometry.
We develop the mathematics of projection in Chapter 4; understanding projection
is crucial to understanding three-dimensional graphics. We prefer, however, to use
an API that allows users to work directly in the domain of their problems and to use
computers to carry out the details of the projection process automatically, without the
users having to make any trigonometric calculations within the application program.
That approach should be a boon to users who have dif“culty learning to draw various
projections on a drafting board or sketching objects in perspective. More important,
users can rely on hardware and software implementations of projections within the
implementation of the API that are far more ef“cient than any possible implementa-
tion of projections within their programs would be.

1.6.2 Three-Dimensional APIs
The synthetic-camera model is the basis for a number of popular APIs, including
OpenGL and Direct3D. If we are to follow the synthetic-camera model, we need
functions in the API to specify the following:

Objects

A viewer

Light sources

Material properties

Objects are usually de“ned by sets of vertices. For simple geometric objects„
such as line segments, rectangles, and polygons„there is a simple relationship be-
tween a list ofvertices, or positions in space, and the object. For more complex
objects, there may be multiple ways of de“ning the object from a set of vertices. A cir-
cle, for example, can be de“ned by three points on its circumference, or by its center
and one point on the circumference.
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Most APIs provide similar sets of primitive objects for the user. These primi-
tives are usually those that can be displayed rapidly on the hardware. The usual sets
include points, line segments, polygons, and sometimes text. OpenGL programs de-
“ne primitives through lists of vertices. The following code fragment speci“es three
vertices:

float vertices[3][3];

vertices[0][0] = 0.0; /* vertex A */
vertices[1][0] = 0.0;
vertices[2][0] = 0.0;
vertices[0][1] = 0.0; /* vertex B */
vertices[1][1] = 1.0;
vertices[2][1] = 0.0;
vertices[0][2] = 0.0; /* vertex C */
vertices[1][2] = 0.0;
vertices[2][2] = 1.0;

In OpenGL, we could either send this array to the GPU each time that we want
it to be displayed or store it on the GPU for later display. Note that these three
vertices only give three locations in a three-dimensional space and do not specify
the geometric entity that they de“ne. The locations could describe a triangle, as
in Figure 1.31, or we could use them to specify two line segments using the “rst
two locations to specify the “rst segment and the second and third locations to
specify the second segment. We could also use the three points to display three pixels
at locations in the frame buffer corresponding to the three vertices. We make this
choice on our application by setting a parameter corresponding to the geometric
entity we would like these locations to specify. For example, in OpenGL we would
useGL_TRIANGLES, GL_LINE_STRIP, or GL_POINTSfor the three possibilities we
just described. Although we are not yet ready to describe all the details of how we
accomplish this task, we can note that regardless of which geometric entity we wish
our vertices to specify, we are specifying the geometry and leaving it to the graphics
system to determine which pixels to color in the frame buffer.

Some APIs let the user work directly in the frame buffer by providing functions
that read and write pixels. Additionally, some APIs provide curves and surfaces as
primitives; often, however, these types are approximated by a series of simpler prim-
itives within the application program. OpenGL provides access to the frame buffer.

We can de“ne a viewer or camera in a variety of ways. Available APIs differ both
in how much ”exibility they provide in camera selection and in how many different
methods they allow. If we look at the camera in Figure 1.32, we can identify four types
of necessary speci“cations:

1. Position The camera location usually is given by the position of the center
of the lens, which is the center of projection (COP).
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FIGURE 1.33 Two-point perspective of a cube.

2. Orientation Once we have positioned the camera, we can place a camera
coordinate system with its origin at the center of projection. We can then
rotate the camera independently around the three axes of this system.

3. Focal length The focal length of the lens determines the size of the image
on the “lm plane or, equivalently, the portion of the world the camera sees.

4. Film plane The back of the camera has a height and a width. On the bellows
camera, and in some APIs, the orientation of the back of the camera can be
adjusted independently of the orientation of the lens.

These speci“cations can be satis“ed in various ways. One way to develop the
speci“cations for the camera location and orientation uses a series of coordinate-
system transformations. These transformations convert object positions represented
in a coordinate system that speci“es object vertices to object positions in a coordinate
system centered at the COP. This approach is useful, both for doing implementation
and for getting the full set of views that a ”exible camera can provide. We use this
approach extensively, starting in Chapter 4.

Having many parameters to adjust, however, can also make it dif“cult to get a
desired image. Part of the problem lies with the synthetic-camera model. Classical
viewing techniques, such as are used in architecture, stress therelationshipbetween
the object and the viewer, rather than theindependencethat the synthetic-camera
model emphasizes. Thus, the classical two-point perspective of a cube in Figure 1.33
is atwo-pointperspective because of a particular relationship between the viewer and
the planes of the cube (see Exercise 1.7). Although the OpenGL API allows us to set
transformations with complete freedom, it also provides helpful extra functions. For
example, consider the two function calls

LookAt(cop, at, up);
Perspective(field_of_view, aspect_ratio, near, far);

The “rst function call points the camera from the center of projection toward a
desired point (theat point), with a speci“edupdirection for the camera. The second
selects a lens for a perspective view (the“eld of view) and how much of the world that
the camera should image (theaspect ratioand thenearandfar distances). However,
none of the APIs built on the synthetic-camera model provide functions for directly
specifying a desired relationship between the camera and an object.

Light sources are de“ned by their location, strength, color, and directionality.
APIs provide a set of functions to specify these parameters for each source. Material
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properties are characteristics, or attributes, of the objects, and such properties are
speci“ed through a series of function calls at the time that each object is de“ned.
Both light sources and material properties depend on the models of light…material
interactions supported by the API. We discuss such models in Chapter 5.

1.6.3 A Sequence of Images
In Chapter 2, we begin our detailed discussion of the OpenGL API that we will use
throughout this book. The images de“ned by your OpenGL programs will be formed
automatically by the hardware and software implementation of the image-formation
process.

Here we look at a sequence of images that shows what we can create using the
OpenGL API. We present these images as an increasingly more complex series of
renderings of the same objects. The sequence not only loosely follows the order in
which we present related topics but also re”ects how graphics systems have developed
over the past 30 years.

Color Plate 1 shows an image of an artist•s creation of a sunlike object. Color
Plate 2 shows the object rendered using only line segments. Although the object con-
sists of many parts, and although the programmer may have used sophisticated data
structures to model each part and the relationships among the parts, the rendered
object shows only the outlines of the parts. This type of image is known as awire-
frame image because we can see only the edges of surfaces: Such an image would be
produced if the objects were constructed with stiff wires that formed a frame with no
solid material between the edges. Before raster-graphics systems became available,
wireframe images were the only type of computer-generated images that we could
produce.

In Color Plate 3, the same object has been rendered with ”at polygons. Certain
surfaces are not visible, because there is a solid surface between them and the viewer;
these surfaces have been removed by a hidden-surface-removal (HSR) algorithm.
Most raster systems can “ll the interior of polygons with a solid color in approxi-
mately the same time that they can render a wireframe image. Although the objects
are three-dimensional, each surface is displayed in a single color, and the image fails
to show the three-dimensional shapes of the objects. Early raster systems could pro-
duce images of this form.

In Chapters 2 and 3, we show you how to generate images composed of simple
geometric objects„points, line segments, and polygons. In Chapters 3 and 4, you
will learn how to transform objects in three dimensions and how to obtain a desired
three-dimensional view of a model, with hidden surfaces removed.

Color Plate 4 illustrates smooth shading of the polygons that approximate the
object; it shows that the object is three-dimensional and gives the appearance of a
smooth surface. We develop shading models that are supported by OpenGL in Chap-
ter 5. These shading models are also supported in the hardware of most recent work-
stations; generating the shaded image on one of these systems takes approximately
the same amount of time as does generating a wireframe image.
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Color Plate 5 shows a more sophisticated wireframe model constructed using
NURBS surfaces, which we introduce in Chapter 10. Such surfaces give the applica-
tion programmer great ”exibility in the design process but are ultimately rendered
using line segments and polygons.

In Color Plates 6 and 7, we add surface texture to our object; texture is one
of the effects that we discuss in Chapter 6. All recent graphics processors support
texture mapping in hardware, so rendering of a texture-mapped image requires little
additional time. In Color Plate 6, we use a technique calledbump mappingthat gives
the appearance of a rough surface even though we render the same ”at polygons as
in the other examples. Color Plate 7 shows anenvironment mapapplied to the surface
of the object, which gives the surface the appearance of a mirror. These techniques
will be discussed in detail in Chapter 7.

Color Plate 8 shows a small area of the rendering of the object using an environ-
ment map. The image on the left shows the jagged artifacts known as aliasing errors
that are due to the discrete nature of the frame buffer. The image on the right has been
rendered using a smoothing or antialiasing method that we shall study in Chapters 5
and 6.

Not only do these images show what is possible with available hardware and a
good API, but they are also simple to generate, as we shall see in subsequent chapters.
In addition, just as the images show incremental changes in the renderings, the
programs are incrementally different from one another.

1.6.4 The Modeling…Rendering Paradigm
In many situations„especially in CAD applications and in the development of com-
plex images, such as for movies„we can separate the modeling of the scene from
the production of the image, or therendering of the scene. Hence, we can look at
image formation as the two-step process shown in Figure 1.34. Although the tasks
are the same as those we have been discussing, this block diagram suggests that we
might implement the modeler and the renderer with different software and hard-
ware. For example, consider the production of a single frame in an animation. We
“rst want to design and position our objects. This step is highly interactive, and we
do not need to work with detailed images of the objects. Consequently, we prefer to
carry out this step on an interactive workstation with good graphics hardware. Once
we have designed the scene, we want to render it, adding light sources, material prop-
erties, and a variety of other detailed effects, to form a production-quality image.
This step requires a tremendous amount of computation, so we might prefer to use a

Interface file
Modeler Renderer

FIGURE 1.34 The modeling…rendering pipeline.
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render farm, a cluster of computers con“gured for numerical computing. Not only is
the optimal hardware different in the modeling and rendering steps, but the software
that we use also may be different.

The interface between the modeler and renderer can be as simple as a “le pro-
duced by the modeler that describes the objects and that contains additional infor-
mation important only to the renderer, such as light sources, viewer location, and
material properties. Pixar•s RenderMan Interface follows this approach and uses a
“le format that allows modelers to pass models to the renderer in text format. One
of the other advantages of this approach is that it allows us to develop modelers
that, although they use the same renderer, are custom-tailored to particular applica-
tions. Likewise, different renderers can take as input the same interface “le. It is even
possible, at least in principle, to dispense with the modeler completely and to use a
standard text editor to generate an interface “le. For any but the simplest scenes, how-
ever, users cannot edit lists of information for a renderer. Rather, they use interactive
modeling software. Because we must have at least a simple image of our objects to
interact with a modeler, most modelers use the synthetic-camera model to produce
these images in real time.

This paradigm has become popular as a method for generating computer games
and images over the Internet. Models, including the geometric objects, lights, cam-
eras, and material properties, are placed in a data structure called ascene graphthat
is passed to a renderer or game engine. We shall examine scene graphs in Chapter 8.

1.7 GRAPHICS ARCHITECTURES

On one side of the API is the application program. On the other is some combination
of hardware and software that implements the functionality of the API. Researchers
have taken various approaches to developing architectures to support graphics APIs.

Early graphics systems used general-purpose computers with the standard von
Neumann architecture. Such computers are characterized by a single processing unit
that processes a single instruction at a time. A simple model of these early graphics
systems is shown in Figure 1.35. The display in these systems was based on a calli-
graphic CRT display that included the necessary circuitry to generate a line segment
connecting two points. The job of the host computer was to run the application pro-
gram and to compute the endpoints of the line segments in the image (in units of the
display). This information had to be sent to the display at a rate high enough to avoid

Host
Digital

to
analog

FIGURE 1.35 Early graphics system.



34 Chapter 1 Graphics Systems and Models
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FIGURE 1.36 Display-processor architecture.

”icker on the display. In the early days of computer graphics, computers were so slow
that refreshing even simple images, containing a few hundred line segments, would
burden an expensive computer.

1.7.1 Display Processors
The earliest attempts to build special-purpose graphics systems were concerned pri-
marily with relieving the general-purpose computer from the task of refreshing the
display continuously. Thesedisplay processorshad conventional architectures (Fig-
ure 1.36) but included instructions to display primitives on the CRT. The main ad-
vantage of the display processor was that the instructions to generate the image could
be assembled once in the host and sent to the display processor, where they were
stored in the display processor•s own memory as adisplay list, or display “le. The
display processor would then execute repetitively the program in the display list, at
a rate suf“cient to avoid ”icker, independently of the host, thus freeing the host for
other tasks. This architecture has become closely associated with the client…server ar-
chitectures that are used in most systems.

1.7.2 Pipeline Architectures
The major advances in graphics architectures parallel closely the advances in work-
stations. In both cases, the ability to create special-purpose VLSI chips was the key
enabling technology development. In addition, the availability of inexpensive solid-
state memory led to the universality of raster displays. For computer-graphics appli-
cations, the most important use of custom VLSI circuits has been in creatingpipeline
architectures.

The concept of pipelining is illustrated in Figure 1.37 for a simple arithmetic
calculation. In our pipeline, there is an adder and a multiplier. If we use this con-
“guration to computea + (b � c), the calculation takes one multiplication and one
addition„the same amount of work required if we use a single processor to carry
out both operations. However, suppose that we have to carry out the same computa-
tion with many values ofa, b, andc. Now, the multiplier can pass on the results of its
calculation to the adder and can start its next multiplication while the adder carries
out the second step of the calculation on the “rst set of data. Hence, whereas it takes
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FIGURE 1.38 Geometric pipeline.

the same amount of time to calculate the results for any one set of data, when we are
working on two sets of data at one time, our total time for calculation is shortened
markedly. Here the rate at which data ”ows through the system, thethroughput of
the system, has been doubled. Note that as we add more boxes to a pipeline, it takes
more time for a single datum to pass through the system. This time is called thela-
tencyof the system; we must balance it against increased throughput in evaluating
the performance of a pipeline.

We can construct pipelines for more complex arithmetic calculations that will
afford even greater increases in throughput. Of course, there is no point in building a
pipeline unless we will do the same operation on many data sets. But that is just what
we do in computer graphics, where large sets of vertices and pixels must be processed
in the same manner.

1.7.3 The Graphics Pipeline
We start with a set of objects. Each object comprises a set of graphical primitives. Each
primitive comprises a set of vertices. We can think of the collection of primitive types
and vertices as de“ning thegeometryof the scene. In a complex scene, there may be
thousands„even millions„of vertices that de“ne the objects. We must process all
these vertices in a similar manner to form an image in the frame buffer. If we think in
terms of processing the geometry of our objects to obtain an image, we can employ
the block diagram in Figure 1.38, which shows the four major steps in the imaging
process:

1. Vertex processing

2. Clipping and primitive assembly

3. Rasterization

4. Fragment processing

In subsequent chapters, we discuss the details of these steps. Here we are content to
overview these steps and show that they can be pipelined.
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1.7.4 Vertex Processing
In the “rst block of our pipeline, each vertex is processed independently. The two
major functions of this block are to carry out coordinate transformations and to
compute a color for each vertex.

Many of the steps in the imaging process can be viewed as transformations be-
tween representations of objects in different coordinate systems. For example, in our
discussion of the synthetic camera, we observed that a major part of viewing is to
convert to a representation of objects from the system in which they were de“ned to
a representation in terms of the coordinate system of the camera. A further example
of a transformation arises when we “nally put our images onto the output device.
The internal representation of objects„whether in the camera coordinate system or
perhaps in a system used by the graphics software„eventually must be represented
in terms of the coordinate system of the display. We can represent each change of
coordinate systems by a matrix. We can represent successive changes in coordinate
systems by multiplying, orconcatenating, the individual matrices into a single ma-
trix. In Chapter 3, we examine these operations in detail. Because multiplying one
matrix by another matrix yields a third matrix, a sequence of transformations is an
obvious candidate for a pipeline architecture. In addition, because the matrices that
we use in computer graphics will always be small (4× 4), we have the opportunity to
use parallelism within the transformation blocks in the pipeline.

Eventually, after multiple stages of transformation, the geometry is transformed
by a projection transformation. We shall see in Chapter 4 that we can implement this
step using 4× 4 matrices, and thus projection “ts in the pipeline. In general, we want
to keep three-dimensional information as long as possible, as objects pass through
the pipeline. Consequently, the projection transformation is somewhat more general
than the projections in Section 1.5. In addition to retaining three-dimensional infor-
mation, there is a variety of projections that we can implement. We shall see these
projections in Chapter 4.

The assignment of vertex colors can be as simple as the program specifying a
color or as complex as the computation of a color from a physically realistic lighting
model that incorporates the surface properties of the object and the characteristic
light sources in the scene. We shall discuss lighting models in Chapter 5.

1.7.5 Clipping and Primitive Assembly
The second fundamental block in the implementation of the standard graphics
pipeline is for clipping and primitive assembly. We must do clipping because of the
limitation that no imaging system can see the whole world at once. The human retina
has a limited size corresponding to an approximately 90-degree “eld of view. Cameras
have “lm of limited size, and we can adjust their “elds of view by selecting different
lenses.

We obtain the equivalent property in the synthetic camera by considering aclip-
ping volume, such as the pyramid in front of the lens in Figure 1.25. The projections
of objects in this volume appear in the image. Those that are outside do not and
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are said to be clipped out. Objects that straddle the edges of the clipping volume are
partly visible in the image. Ef“cient clipping algorithms are developed in Chapter 6.

Clipping must be done on a primitive-by-primitive basis rather than on a vertex-
by-vertex basis. Thus, within this stage of the pipeline, we must assemble sets of
vertices into primitives, such as line segments and polygons, before clipping can take
place. Consequently, the output of this stage is a set of primitives whose projections
can appear in the image.

1.7.6 Rasterization
The primitives that emerge from the clipper are still represented in terms of their
vertices and must be converted to pixels in the frame buffer. For example, if three
vertices specify a triangle with a solid color, the rasterizer must determine which
pixels in the frame buffer are inside the polygon. We discuss this rasterization (or
scan-conversion) process in Chapter 6 for line segments and polygons. The output of
the rasterizer is a set offragmentsfor each primitive. A fragment can be thought of
as a potential pixel that carries with it information, including its color and location,
that is used to update the corresponding pixel in the frame buffer. Fragments can
also carry along depth information that allows later stages to determine if a particular
fragment lies behind other previously rasterized fragments for a given pixel.

1.7.7 Fragment Processing
The “nal block in our pipeline takes in the fragments generated by the rasterizer and
updates the pixels in the frame buffer. If the application generated three-dimensional
data, some fragments may not be visible because the surfaces that they de“ne are
behind other surfaces. The color of a fragment may be altered by texture mapping or
bump mapping, as in Color Plates 6 and 7. The color of the pixel that corresponds to
a fragment can also be read from the frame buffer and blended with the fragment•s
color to create translucent effects. These effects will be covered in Chapter 7.

1.8 PROGRAMMABLE PIPELINES

Graphics architectures have gone through multiple design cycles in which the impor-
tance of special-purpose hardware relative to standard CPUs has gone back and forth.
However, the importance of the pipeline architecture has remained regardless of this
cycle. None of the other approaches„ray tracing, radiosity, photon mapping„can
achieve real-time behavior, that is, the ability to render complex dynamic scenes
so that the viewer sees the display without defects. However, the termreal-timeis
becoming increasingly dif“cult to de“ne as graphics hardware improves. Although
some approaches such as ray tracing can come close to real time, none can achieve the
performance of pipeline architectures with simple application programs and simple
GPU programs. Hence, the commodity graphics market is dominated by graphics
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cards that have pipelines built into the graphics processing unit. All of these com-
modity cards implement the pipeline that we have just described, albeit with more
options, many of which we shall discuss in later chapters.

For many years, these pipeline architectures have had a “xed functionality. Al-
though the application program could set many parameters, the basic operations
available within the pipeline were “xed. Recently, there has been a major advance
in pipeline architectures. Both the vertex processor and the fragment processor are
now programmable by the application program. One of the most exciting aspects of
this advance is that many of the techniques that formerly could not be done in real
time because they were not part of the “xed-function pipeline can now be done in
real time. Bump mapping, which we illustrated in Color Plate 6, is but one example
of an algorithm that is now programmable but formerly could only be done off-line.

Vertex programs can alter the location or color of each vertex as it ”ows through
the pipeline. Thus, we can implement a variety of light…material models or create new
kinds of projections. Fragment programs allow us to use textures in new ways and to
implement other parts of the pipeline, such as lighting, on a per-fragment basis rather
than per vertex.

Programmability is now available at every level, including hand-held devices
such as cell phones. WebGL is being built into Web browsers. At the high end, the
speed and parallelism in programmable GPUs make them suitable for carrying out
high-performance computing that does not involve graphics. The latest versions of
OpenGL have responded to these advances “rst by adding programmability to the
standard as an option that an application programmer could use as an alternative to
the “xed-function pipeline and later through versions that require the application
to provide both a vertex shader and a fragment shader. We will follow these new
standards throughout. Although it will take a little more code for our “rst programs
because we will not use a “xed-function pipeline, the rewards will be signi“cant as
our code will be ef“cient and easily extendable.

1.9 PERFORMANCE CHARACTERISTICS

There are two fundamentally different types of processing in our architecture. At
the front end, there is geometric processing, based on processing vertices through
the various transformations, vertex shading, clipping, and primitive assembly. This
processing is ideally suited for pipelining, and it usually involves ”oating-point cal-
culations. The geometry engine developed by Silicon Graphics, Inc. (SGI) was a VLSI
implementation for many of these operations in a special-purpose chip that became
the basis for a series of fast graphics workstations. Later, ”oating-point accelerator
chips put 4× 4 matrix-transformation units on the chip, reducing a matrix multi-
plication to a single instruction. Nowadays, graphics workstations and commodity
graphics cards use graphics processing units (GPUs) that perform most of the graph-
ics operations at the chip level. Pipeline architectures are the dominant type of high-
performance system.
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will be in a graphics library. Second, it leads to the notion of a pipeline architecture,
in which each of the various stages in the pipeline performs distinct operations on
geometric entities and then passes on the transformed objects to the next stage.

We also introduced the idea of tracing rays of light to obtain an image. This para-
digm is especially useful in understanding the interaction between light and materials
that is essential to physical image formation. Because ray tracing and other physically
based strategies cannot render scenes in real time, we defer further discussion of them
until Chapter 11.

The modeling…rendering paradigm is becoming increasingly important. A stan-
dard graphics workstation can generate millions of line segments or polygons per
second at a resolution exceeding 2048× 1546 pixels. Such a workstation can shade
the polygons using a simple shading model and can display only visible surfaces at this
rate. However, realistic images may require a resolution of up to 4000× 6000 pixels
to match the resolution of “lm and may use light and material effects that cannot be
implemented in real time. Even as the power of available hardware and software con-
tinues to grow, modeling and rendering have such different goals that we can expect
the distinction between a modeling and a rendering to survive.

Our next step will be to explore the application side of graphics programming.
We use the OpenGL API, which is powerful, is supported on most platforms, and
has a distinct architecture that will allow us to use it to understand how computer
graphics works, from an application program to a “nal image on a display.

SUGGESTED READINGS

There are many excellent graphics textbooks. The book by Newman and Sproull
[New73] was the “rst to take the modern point of view of using the synthetic-camera
model. The various versions of Foley et al. [Fol90, Fol94] have been the standard
references for over a decade. Other good texts include Hearn and Baker [Hea11], Hill
[Hil07], and Shirley [Shi02].

Good general references includeComputer Graphics, the quarterly journal of
SIGGRAPH (the Association for Computing Machinery•s Special Interest Group on
Graphics),IEEE Computer Graphics and Applications, andVisual Computer. The pro-
ceedings of the annual SIGGRAPH conference include the latest techniques. These
proceedings formerly were published as the summer issue ofComputer Graphics.
Now, they are published as an issue of theACM Transactions on Graphicsand are
available on DVD. Of particular interest to newcomers to the “eld are the state-of-
the-art animations available from SIGGRAPH and the notes from tutorial courses
taught at that conference, both of which are now available on DVD or in ACM•s dig-
ital library.

Sutherland•s doctoral dissertation, published asSketchpad: A Man…Machine
Graphical Communication System[Sut63] was probably the seminal paper in the de-
velopment of interactive computer graphics. Sutherland was the “rst person to realize
the power of the new paradigm in which humans interacted with images on a CRT
display. Videotape copies of “lm of his original work are still available.
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Tufte•s books [Tuf83, Tuf90, Tuf97] show the importance of good visual design
and contain considerable historical information on the development of graphics. The
article by Carlbom and Paciorek [Car78] gives a good discussion of some of the
relationships between classical viewing, as used in “elds such as architecture, and
viewing by computer.

Many books describe the human visual system. Pratt [Pra78] gives a good short
discussion for working with raster displays. Also see Glassner [Gla95], Wyszecki and
Stiles [Wys82], and Hall [Hal89].

EXERCISES

1.1 The pipeline approach to image generation is nonphysical. What are the main
advantages and disadvantages of such a nonphysical approach?

1.2 In computer graphics, objects such as spheres are usually approximated by
simpler objects constructed from ”at polygons (polyhedra). Using lines of lon-
gitude and latitude, de“ne a set of simple polygons that approximate a sphere
centered at the origin. Can you use only quadrilaterals or only triangles?

1.3 A different method of approximating a sphere starts with a regular tetrahe-
dron, which is constructed from four triangles. Find its vertices, assuming that
it is centered at the origin and has one vertex on they-axis. Derive an algo-
rithm for obtaining increasingly closer approximations to a unit sphere, based
on subdividing the faces of the tetrahedron.

1.4 Consider the clipping of a line segment in two dimensions against a rectan-
gular clipping window. Show that you require only the endpoints of the line
segment to determine whether the line segment is not clipped, is partially vis-
ible, or is clipped out completely.

1.5 For a line segment, show that clipping against the top of the clipping rectangle
can be done independently of the clipping against the other sides. Use this
result to show that a clipper can be implemented as a pipeline of four simpler
clippers.

1.6 Extend Exercises 1.4 and 1.5 to clipping against a three-dimensional right
parallelepiped.

1.7 Consider the perspective views of the cube shown in Figure 1.39. The one on
the left is called aone-point perspectivebecause parallel lines in one direction
of the cube„along the sides of the top„converge to avanishing pointin the
image. In contrast, the image on the right is atwo-point perspective. Charac-
terize the particular relationship between the viewer, or a simple camera, and
the cube that determines why one is a two-point perspective and the other a
one-point perspective.

1.8 The memory in a frame buffer must be fast enough to allow the display to
be refreshed at a rate suf“ciently high to avoid ”icker. A typical workstation
display can have a resolution of 1280× 1024 pixels. If it is refreshed 72 times
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FIGURE 1.39 Perspective views of a cube.

per second, how fast must the memory be? That is, how much time can we take
to read one pixel from memory? What is this number for a 480× 640 display
that operates at 60 Hz but is interlaced?

1.9 Movies are generally produced on 35 mm “lm that has a resolution of approx-
imately 2000× 3000 pixels. What implication does this resolution have for
producing animated images for television as compared with “lm?

1.10 Consider the design of a two-dimensional graphical API for a speci“c appli-
cation, such as for VLSI design. List all the primitives and attributes that you
would include in your system.

1.11 It is possible to design a color CRT that uses a single electron gun and does not
have a shadow mask. The single beam is turned on and off at the appropriate
times to excite the desired phosphors. Why might such a CRT be more dif“cult
to design, as compared to the shadow-mask CRT?

1.12 In a typical shadow-mask CRT, if we want to have a smooth display, the width
of a pixel must be about three times the width of a triad. Assume that a monitor
displays 1280× 1024 pixels, has a CRT diameter of 50 cm, and has a CRT depth
of 25 cm. Estimate the spacing between holes in the shadow mask.

1.13 An interesting exercise that should help you understand how rapidly graphics
performance has improved is to go to the Web sites of some of the GPU
manufacturers, such as NVIDIA, ATI, and Intel, and look at the speci“cations
for their products. Often the specs for older cards and GPUs are still there. How
rapidly has geometric performance improved? What about pixel processing?
How has the cost per rendered triangle decreased?



CHAPTER2
GRAPHICS PROGRAMMING

Our approach to computer graphics is programming oriented. Consequently, we
want you to get started programming graphics as soon as possible. To this end,

we will introduce a minimal application programming interface (API). This API will
be suf“cient to allow you to program many interesting two- and three-dimensional
problems and to familiarize you with the basic graphics concepts.

We regard two-dimensional graphics as a special case of three-dimensional
graphics. This perspective allows us to get started, even though we will touch on
three-dimensional concepts lightly in this chapter. Our two-dimensional code will
execute without modi“cation on a three-dimensional system.

Our development will use a simple but informative problem: the Sierpinski gas-
ket. It shows how we can generate an interesting and, to many people, unexpectedly
sophisticated image using only a handful of graphics functions. We use OpenGL as
our API, but our discussion of the underlying concepts is broad enough to encompass
most modern systems. The functionality that we introduce in this chapter is suf“cient
to allow you to write basic two- and three-dimensional programs that do not require
user interaction.

2.1 THE SIERPINSKI GASKET

We will use as a sample problem the drawing of the Sierpinski gasket„an interesting
shape that has a long history and is of interest in areas such as fractal geometry. The
Sierpinski gasket is an object that can be de“ned recursively and randomly; in the
limit, however, it has properties that are not at all random. We start with a two-
dimensional version, but as we will see in Section 2.10, the three-dimensional version
is almost identical.

Suppose that we start with three points in space. As long as the points are not
collinear, they are the vertices of a unique triangle and also de“ne a unique plane.
We assume that this plane is the planez = 0 and that these points, as speci“ed in

43
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FIGURE 2.1 Generation of
the Sierpinski gasket.

some convenient coordinate system,1 are(x1, y1, 0), (x2, y2, 0), and(x3, y3, 0). The
construction proceeds as follows:

1. Pick an initial pointp = (x, y, 0) at random inside the triangle.

2. Select one of the three vertices at random.

3. Find the pointq halfway betweenp and the randomly selected vertex.

4. Displayq by putting some sort of marker, such as a small circle, at the corre-
sponding location on the display.

5. Replacep with q.

6. Return to step 2.

Thus, each time that we generate a new point, we display it on the output device. This
process is illustrated in Figure 2.1, wherep0 is the initial point, andp1 andp2 are the
“rst two points generated by our algorithm.

Before we develop the program, you might try to determine what the resulting
image will be. Try to construct it on paper; you might be surprised by your results.

A possible form for our graphics program might be this:

main( )
{

initialize_the_system();
p = find_initial_point();

for(some_number_of_points)
{

q = generate_a_point(p);
display_the_point(q);
p = q;

}
cleanup();

}

This form can be converted into a real program fairly easily. However, even at
this level of abstraction, we can see two other alternatives. Consider the pseudocode

main( )
{

initialize_the_system();
p = find_initial_point();

1. In Chapter 3, we expand the concept of a coordinate system to the more general formulation of a
frame.
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for(some_number_of_points)
{

q = generate_a_point(p);
store_the_point(q);
p = q;

}
display_all_points();
cleanup();

}

In this algorithm, we compute all the points “rst and put them into an array or
some other data structure. We then display all the points through a single function
call. This approach avoids the overhead of sending small amounts of data to the
graphics processor for each point we generate at the cost of having to store all the
data. The strategy used in the “rst algorithm is known asimmediate mode graphics
and, until recently, was the standard method for displaying graphics, especially where
interactive performance was needed. One consequence of immediate mode is that
there is no memory of the geometric data. With our “rst example, if we want to
display the points again, we would have to go through the entire creation and display
process a second time.

In our second algorithm, because the data are stored in a data structure, we can
redisplay the data, perhaps with some changes such as altering the color or changing
the size of a displayed point, by resending the array without regenerating the points.
The method of operation is known asretained mode graphicsand goes back to some
of the earliest special purpose graphics display hardware. The architecture of modern
graphics systems that employ a GPU leads to a third version of our program.

Our second approach has one major ”aw. Suppose that, as we might in an
animation, we wish to redisplay the same objects. The geometry of the objects is
unchanged, but the objects may be moving. Displaying all the points involves sending
the data from the CPU to the GPU each time we wish to display the objects in a new
position. For large amounts of data, this data transfer is the major bottleneck in the
display process. Consider the following alternative scheme:

main( )
{

initialize_the_system();
p = find_initial_point();

for(some_number_of_points)
{

q = generate_a_point(p);
store_the_point(q);
p = q;

}
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send_all_points_to_GPU();
display_data_on_GPU();
cleanup();

}

As before, we place data in an array, but now we have broken the display process into
two parts: storing the data on the GPU and displaying the data that has been stored.
If we only have to display our data once, there is no advantage over our previous
method, but if we want to animate the display, our data are already on the GPU and
redisplay does not require any additional data transfer, only a simple function call
that alters the location of some spatial data describing the objects that have moved.

Although our “nal OpenGL program will have a slightly different organization,
it will follow this third strategy. We develop the full program in stages. First, we
concentrate on the core: generating and displaying points. We must answer two
questions:

How do we represent points in space?

Should we use a two-dimensional, three-dimensional, or other representa-
tion?

Once we answer these questions, we will be able to place our geometry on the GPU in
a form that can be rendered. Then, we will be able to address how we view our objects
using the power of programmable shaders.

2.2 PROGRAMMING TWO-DIMENSIONAL APPLICATIONS

For two-dimensional applications, such as the Sierpinski gasket, although we could
use a pen-plotter API, such an approach would limit us. Instead, we choose to start
with a three-dimensional world; we regard two-dimensional systems, such as the one
on which we will produce our image, as special cases. Mathematically, we view the
two-dimensional plane, or a simple two-dimensional curved surface, as a subspace of
a three-dimensional space. Hence, statements„both practical and abstract„about
the larger three-dimensional world hold for the simpler two-dimensional world.

We can represent a point in the planez = 0 asp = (x, y, 0) in the three-
dimensional world, or asp = (x, y) in the two-dimensional plane. OpenGL, like most
three-dimensional graphics systems, allows us to use either representation, with the
underlying internal representation being the same, regardless of which form the user
chooses. We can implement representations of points in a number of ways, but the
simplest is to think of a three-dimensional point as being represented by a triplet
p = (x, y, z) or a column matrix

p =

�

�
x
y
z

�

� ,
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whose components give the location of the point. For the moment, we can leave aside
the question of the coordinate system in whichp is represented.

We use the termsvertexandpoint in a somewhat different manner in OpenGL.
A vertex is a position in space; we use two-, three-, and four-dimensional spaces in
computer graphics. We use vertices to specify the atomic geometric primitives that
are recognized by our graphics system. The simplest geometric primitive is a point
in space, which is usually speci“ed by a single vertex. Two vertices can specify a line
segment, a second primitive object; three vertices can specify either a triangle or a
circle; four vertices can specify a quadrilateral; and so on. Two vertices can also specify
either a circle or a rectangle. Likewise, three vertices can also specify three points
or two connected line segments, and four vertices can specify a variety of objects
including two triangles.

The heart of our Sierpinski gasket program is generating the points. In order to
go from our third algorithm to a working OpenGL program, we need to introduce a
little more detail on OpenGL. We want to start with as simple a program as possible.
One simpli“cation is to delay a discussion of coordinate systems and transformations
among them by putting all the data we want to display inside a cube centered at the
origin whose diagonal goes from (Š1, Š1, Š1) and (1, 1, 1). This system known
asclip coordinates is the one that our vertex shader uses to send information to
the rasterizer. Objects outside this cube will be eliminated, orclipped, and cannot
appear on the display. Later, we will learn to specify geometry in our application
program in coordinates better suited for our application„object coordinates„and
use transformations to convert the data to a representation in clip coordinates.

We could write the program using a simple array of two elements to hold the
x- and y-values of each point. We will have far clearer code if we “rst de“ne a two-
dimensional point type and operations for this type. We have created such classes
and operators and put them in a “levec.h . The types invec.h and the other
types de“ned later in the three- and four-dimensional classes match the types in the
OpenGL Shading Language and so should make all our coding examples clearer than
if we had used ordinary arrays. In addition to de“ning these new types,vec.h and its
companion “lemat2.h also de“ne overloaded operators and constructors for these
types that match GLSL. Hence, code such as

vec2 a = vec2(1.0, 2.0);
vec2 b = vec2(3.0, 4.0);
vec2 c = a + b;

can appear either in a shader or in the application. We can input and output points
using the usual stream operatorscin andcout . We can access individual elements
using either the usual membership operator, e.g.,p.x or p.y , or by indexing as we
would an array (p[0] andp[1] ).

One small addition will make our applications even clearer. Rather than using
the GLSLvec2, we typedef apoint2

typedef vec2 point2;
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Within vec.h , the typevec2 is speci“ed as astruct with two elements of type
GLfloat . In OpenGL, we often use basic OpenGL types, such asGLfloat and
GLint , rather than the corresponding C typesfloat and int . These types are
de“ned in the OpenGL header “les and usually in the obvious way„for example,

typedef float GLfloat;

However, use of the OpenGL types allows additional ”exibility for implementations
where, for example, we might want to change ”oats to doubles without altering
existing application programs.

The following code generates 5000 points starting with the vertices of a triangle
that lie in the planez = 0:

#include "vec.h" // include point types and operations
#include <stdlib.h> //includes random number generator

typedef vec2 point2; //defines a point2 type identical to a vec2

void init()
{

const int NumPoints = 5000;
point2 points[NumPoints];

// A triangle in the plane z= 0

point2 vertices[3]={point2(-1.0,-1.0), point2(0.0,1.0),
point2(1.0,-1.0)};

// An arbitrary initial point inside the triangle

points[0] = point2(0.25, 0.50);

// compute and store NumPoints-1 new points

for(in t k = 1; k < NumPoints; k++)
{

int j = rand() % 3; // pick a vertex at random

// Compute the point halfway between selected
// vertex and previous point
points[k] = (points[k-1]+vertices[j])/2.0;

}
}

Note that because every point we generate must lie inside the triangle determined by
these vertices, we know that none of the generated points will be clipped out.
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The functionrand() is a standard random-number generator that produces a
new random integer each time it is called. We use the modulus operator to reduce
these random integers to the three integers 0, 1, and 2. For a small number of itera-
tions, the particular characteristics of the random-number generator are not crucial,
and any other random-number generator should work at least as well asrand.

We intend to generate the points only once and then place them on the GPU.
Hence, we make their creation part of an initialization functioninit .

We speci“ed our points in two dimensions. We could have also speci“ed them in
three dimensions by adding az-coordinate, which is always zero through the three-
dimensional types inmat.h andvec.h . The changes to the code would be minimal.
We would have the code lines

#include "vec.h" // three-dimensional type

typedef vec3 point3;

and

point3 points [NumPoints];
point3 vertices[3] = {point3(-1.0,-1.0, 0.0), point3(0.0,1.0, 0.0),

point3(1.0,-1.0, 0.0)};

as part of initialization. Although we still do not have a complete program, Figure 2.2
shows the output that we expect to see.

Note that because any three noncollinear points specify a unique plane, had we
started with three points(x1, y1, z1), (x2, y2, z2), and(x3, y3, z3) along with an initial
point in the same plane, then the gasket would be generated in the plane speci“ed by
the original three vertices.

We have now written the core of the program. Although we have some data,
we have not placed these data on the GPU nor have we asked the GPU to display
anything. We have not even introduced a single OpenGL function. Before we can
display anything, we still have to address issues such as the following:

1. In what colors are we drawing?

2. Where on the display does our image appear?

3. How large will the image be?

4. How do we create an area of the display„a window„for our image?

5. How much of our in“nite drawing surface will appear on the display?

6. How long will the image remain on the display?

The answers to all these questions are important, although initially they may appear
to be peripheral to our major concerns. As we will see, the basic code that we de-
velop to answer these questions and to control the placement and appearance of our
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FIGURE 2.2 The Sierpinski gasket as generated with 5000 random
points.

renderings will not change substantially across programs. Hence, the effort that we
expend now will be repaid later.

2.3 THE OPENGL APPLICATION PROGRAMMING INTERFACE

We have the heart of a simple graphics program; now, we want to gain control
over how our objects appear on the display. We also want to control the ”ow of
the program, and we have to interact with the window system. Before completing
our program, we describe the OpenGL Application Programming Interface (API) in
more detail. Because vertices are represented in the same manner internally, whether
they are speci“ed as two- or three-dimensional entities, everything that we do here
will be equally valid in three dimensions. Of course, we can do much more in three
dimensions, but we are only getting started. In this chapter, we concentrate on how
to specify primitives to be displayed.

OpenGL•s structure is similar to that of most modern APIs, such as DirectX.
Hence, any effort that you put into learning OpenGL will carry over to other soft-
ware systems. Although OpenGL is easy to learn, compared with other APIs, it is
nevertheless powerful. It supports the simple two- and three-dimensional programs
that we will develop in Chapters 2 through 5; it also supports the advanced rendering
techniques that we study in Chapters 7 through 11.

Our prime goal is to study computer graphics; we are using an API to help us
attain that goal. Consequently, we do not present all OpenGL functions, and we
omit many details. However, our sample programs will be complete. More detailed
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information on OpenGL and on other APIs is given in the Suggested Readings section
at the end of the chapter.

2.3.1 Graphics Functions
Our basic model of a graphics package is ablack box, a term that engineers use to
denote a system whose properties are described only by its inputs and outputs; we
may know nothing about its internal workings. We can think of the graphics system
as a box whose inputs are function calls from an application program; measurements
from input devices, such as the mouse and keyboard; and possibly other input, such
as messages from the operating system. The outputs are primarily the graphics sent
to our output devices. For now, we can take the simpli“ed view of inputs as function
calls and outputs as primitives displayed on our monitor, as shown in Figure 2.3.

A graphics system performs multiple tasks to produce output and handle user
input. An API for interfacing with this system can contain hundreds of individual
functions. It will be helpful to divide these functions into seven major groups:

1. Primitive functions

2. Attribute functions

3. Viewing functions

4. Transformation functions

5. Input functions

6. Control functions

7. Query functions

Although we will focus on OpenGL as the particular system that we use, all graphics
APIs support similar functionality. What differs among APIs is where these functions
are supported. OpenGL is designed around a pipeline architecture, and modern ver-
sions are based on using programmable shaders. Consequently, OpenGL and other
APIs such as DirectX that support a similar architecture will have much in common,
whereas OpenGL and an API for a ray tracer will have less overlap. Nevertheless, re-
gardless of the underlying architecture and API, we still have to address all the seven
tasks.

Theprimitive functions de“ne the low-level objects or atomic entities that our
system can display. Depending on the API, the primitives can include points, line
segments, polygons, pixels, text, and various types of curves and surfaces. OpenGL
supports a very limited set of primitives directly, only points, line segments, and
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triangles. Support for other primitives comes from the application approximating
them with the supported primitives. For the most important objects such as reg-
ular polyhedra, quadrics, and Bezier curves and surfaces that are not directly sup-
ported by OpenGL, there are libraries that provide the necessary code. Support for
expanded sets of primitives is usually done with great ef“ciency through program-
mable shaders.

If primitives are thewhat of an API„the primitive objects that can be
displayed„then attributes are thehow. That is, the attributes govern the way that a
primitive appears on the display.Attribute functions allow us to perform operations
ranging from choosing the color with which we display a line segment, to picking a
pattern with which to “ll the inside of a polygon, to selecting a typeface for the titles
on a graph. In OpenGL, we can set colors by passing the information from the appli-
cation to the shader or by having a shader compute a color, for example, through a
lighting model that uses data specifying light sources and properties of the surfaces
in our model.

Our synthetic camera must be described if we are to create an image. As we saw in
Chapter 1, we must describe the camera•s position and orientation in our world and
must select the equivalent of a lens. This process will not only “x the view but also
allow us to clip out objects that are too close or too far away. Theviewing functions
allow us to specify various views, although APIs differ in the degree of ”exibility they
provide in choosing a view. OpenGL does not provide any viewing functions but
relies on the use of transformations in the shaders to provide the desired view.

One of the characteristics of a good API is that it provides the user with a set of
transformation functions that allows her to carry out transformations of objects,
such as rotation, translation, and scaling. Our developments of viewing in Chap-
ter 4 and of modeling in Chapter 8 will make heavy use of matrix transformations.
In OpenGL, we carry out transformations by forming transformations in our appli-
cations and then applying them either in the application or in the shaders.

For interactive applications, an API must provide a set ofinput functions to
allow us to deal with the diverse forms of input that characterize modern graphics
systems. We need functions to deal with devices such as keyboards, mice, and data
tablets. Later in this chapter, we will introduce functions for working with different
input modes and with a variety of input devices.

In any real application, we also have to worry about handling the complexities of
working in a multiprocessing, multiwindow environment„usually an environment
where we are connected to a network and there are other users. Thecontrol functions
enable us to communicate with the window system, to initialize our programs, and
to deal with any errors that take place during the execution of our programs.

If we are to write device-independent programs, we should expect the imple-
mentation of the API to take care of differences between devices, such as how many
colors are supported or the size of the display. However, there are applications where
we need to know some properties of the particular implementation. For example, we
would probably choose to do things differently if we knew in advance that we were
working with a display that could support only two colors rather than millions of
colors. More generally, within our applications we can often use other information
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within the API, including camera parameters or values in the frame buffer. A good
API provides this information through a set ofquery functions.

2.3.2 The Graphics Pipeline and State Machines
If we put together some of these perspectives on graphics APIs, we can obtain another
view, one closer to the way OpenGL, in particular, is actually organized and imple-
mented. We can think of the entire graphics system as astate machine, a black box
that contains a “nite-state machine. This state machine has inputs that come from the
application program. These inputs may change the state of the machine or can cause
the machine to produce a visible output. From the perspective of the API, graphics
functions are of two types: those that specify primitives that ”ow through a pipeline
inside the state machine and those that either change the state inside the machine
or return state information. In OpenGL, there are very few functions that can cause
any output. Most set the state, either by enabling various OpenGL features„hidden-
surface removal, texture„or set parameters used for rendering.

Until recently, OpenGL de“ned many state variables and contained separate
functions for setting the values of individual variables. The latest versions have elim-
inated most of these variables and functions. Instead, the application program can
de“ne its own state variables and use them or send their values to the shaders.

One important consequence of the state machine view is that most parame-
ters are persistent; their values remain unchanged until we explicitly change them
through functions that alter the state. For example, once we set a color, that color
remains thecurrent coloruntil it is changed through a color-altering function. An-
other consequence of this view is that attributes that we may conceptualize as bound
to objects„a red line or a blue circle„are in fact part of the state, and a line will be
drawn in red only if the current color state calls for drawing in red. Although within
our applications it is usually harmless, and often preferable, to think of attributes as
bound to primitives, there can be annoying side effects if we neglect to make state
changes when needed or lose track of the current state.

2.3.3 The OpenGL Interface
OpenGL functions are in a single library named GL (or OpenGL in Windows). Func-
tion names begin with the lettersgl . Shaders are written in the OpenGL Shading
Language (GLSL), which has a separate speci“cation from OpenGL, although the
functions to interface the shaders with the application are part of the OpenGL API.

To interface with the window system and to get input from external devices into
our programs, we need at least one more library. For each major window system there
is a system-speci“c library that provides the •glueŽ between the window system and
OpenGL. For the X Window System, this library is called GLX, for Windows, it is wgl,
and for the Macintosh, it is agl. Rather than using a different library for each system,
we use two readily available libraries, theOpenGL Extension Wrangler (GLEW)and
theOpenGLUtilityToolkit (GLUT). GLEW removes operating system dependencies.
GLUT provides the minimum functionality that should be expected in any modern
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windowing system.2 We introduce a few of its functions in this chapter and describe
more of them in Chapter 3.

Figure 2.4 shows the organization of the libraries for an X Window System en-
vironment. For this window system, GLUT will use GLX and the X libraries. The
application program, however, can use only GLUT functions and thus can be recom-
piled with the GLUT library for other window systems.

OpenGL makes heavy use of de“ned constants to increase code readability and
avoid the use of magic numbers. Thus, strings such asGL_FILLandGL_POINTSare
de“ned in header (.h ) “les. In most implementations, one of theinclude lines

#include <GL/glut.h>

or

#include <GLUT/glut.h>

is suf“cient to read inglut.h andgl.h .
Although OpenGL is not object oriented, it supports a variety of data types

through multiple forms for many functions. For example, we will use various forms
of the functionglUniform to transfer data to shaders. If we transfer a ”oating-point
number such as a time value, we would useglUniform1f . We could useglUni-
form3iv to transfer an integer position in three dimensions through a pointer to a
three-dimensional array ofint s. Later, we will use the formglUniformMatrix4fv
to transfer a 4× 4 matrix of float s. We will refer to such functions using the
notation

glSomeFunction*();

where the* can be interpreted as either two or three characters of the formnt or ntv ,
wheren signi“es the number of dimensions (2, 3, 4, ormatrix ); t denotes the data
type, such as integer (i ), ”oat ( f ), or double (d); andv, if present, indicates that the
variables are speci“ed through a pointer to an array, rather than through an argument

2. A more up-to-date version of GLUT is provided byfreeglut , which is available on the Web.
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list. We will use whatever form is best suited for our discussion, leaving the details
of the various other forms to theOpenGL Programming Guide[Shr10]. Regardless
of which form an application programmer chooses, the underlying representation is
the same, just as the plane on which we are constructing the gasket can be looked
at as either a two-dimensional space or the subspace of a three-dimensional space
corresponding to the planez = 0. In Chapter 3, we will see that the underlying
representation is four-dimensional; however, we do not need to worry about that
fact yet. In general, the application programmer chooses the form to use that is best
suited for her application.

2.3.4 Coordinate Systems
At this point, if we look back at our Sierpinski gasket code, you may be puzzled about
how to interpret the values ofx, y, andz in our speci“cation of vertices. In what
units are they? Are they in feet, meters, microns? Where is the origin? In each case,
the simple answer is that it is up to you.

Originally, graphics systems required the user to specify all information, such as
vertex locations, directly in units of the display device. If that were true for high-level
application programs, we would have to talk about points in terms of screen locations
in pixels or centimeters from a corner of the display. There are obvious problems with
this method, not the least of which is the absurdity of using distances on the computer
screen to describe phenomena where the natural unit might be light years (such as
in displaying astronomical data) or microns (for integrated-circuit design). One of
the major advances in graphics software systems occurred when the graphics systems
allowed users to work in any coordinate system that they desired. The advent of
device-independent graphicsfreed application programmers from worrying about
the details of input and output devices. The user•s coordinate system became known
as theworld coordinate system, or the application or object coordinate system.
Within the slight limitations of ”oating-point arithmetic on our computers, we can
use any numbers that “t our application.

We will refer to the units that the application program uses to specify vertex posi-
tions asvertex coordinates. In most applications, vertex coordinates will be the same
as object or world coordinates, but depending on what we choose to do or not do in
our shaders, vertex coordinates can be one of the other internal coordinate systems
used in the pipeline. We will discuss these other coordinate systems in Chapters 3
and 4.

Units on the display were “rst calledphysical-device coordinatesor justdevice
coordinates. For raster devices, such as most CRT and ”at panel displays, we use
the termwindow coordinatesor screen coordinates.Window coordinates are always
expressed in some integer type, because the center of any pixel in the frame buffer
must be located on a “xed grid or, equivalently, because pixels are inherently discrete
and we specify their locations using integers.

At some point, the values in vertex coordinates must be mapped to window
coordinates, as shown in Figure 2.5. The graphics system, rather than the user, is
responsible for this task, and the mapping is performed automatically as part of the
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FIGURE 2.5 Mapping from vertex coordinates to screen coordinates.

rendering process. As we will see in the next few sections, to de“ne this mapping the
user needs to specify only a few parameters„such as the area of the world that she
would like to see and the size of the display. However, between the application and the
frame buffer are the two shaders and rasterizer, and, as we shall see when we discuss
viewing, there are three other intermediate coordinate systems of importance.

2.4 PRIMITIVES AND ATTRIBUTES

Within the graphics community, there has been an ongoing debate about which
primitives should be supported in an API. The debate is an old one and has never
been fully resolved. On the minimalist side, the contention is that an API should
contain a small set of primitives that all hardware can be expected to support. In
addition, the primitives should be orthogonal, each giving a capability unobtainable
from the others. Minimal systems typically support lines, polygons, and some form of
text (strings of characters), all of which can be generated ef“ciently in hardware. On
the other end are systems that can also support a variety of primitives, such as circles,
curves, surfaces, and solids. The argument here is that users need more complex
primitives to build sophisticated applications easily. However, because few hardware
systems can be expected to support the large set of primitives that is the union of all
the desires of the user community, a program developed with such a system probably
would not be portable, because few implementations could be expected to support
the entire set of primitives.

As graphics hardware has improved and real-time performance has become mea-
sured in the tens of millions of polygons per second, the balance has tilted toward
supporting a minimum set of primitives. One reason is that GPUs achieve their speed
largely because they are optimized for points, lines, and triangles. We will develop
code later that will approximate various curves and surfaces with primitives that are
supported on GPUs.

We can separate primitives into two classes:geometric primitivesand image,
or raster, primitives. Geometric primitives are speci“ed in the problem domain and
include points, line segments, polygons, curves, and surfaces. These primitives pass
through a geometric pipeline, as shown in Figure 2.6, where they are subject to a series
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of geometric operations that determine whether a primitive is visible, where on the
display it appears if it is visible, and the rasterization of the primitive into pixels in
the frame buffer. Because geometric primitives exist in a two- or three-dimensional
space, they can be manipulated by operations such as rotation and translation. In
addition, they can be used as building blocks for other geometric objects using these
same operations. Raster primitives, such as arrays of pixels, lack geometric properties
and cannot be manipulated in space in the same way as geometric primitives. They
pass through a separate parallel pipeline on their way to the frame buffer. We will
defer our discussion of raster primitives until Chapter 7.

The basic OpenGL geometric primitives are speci“ed by sets of vertices. An
application starts by computing vertex data„positions and other attributes„and
putting the results into arrays that are sent to the GPU for display. When we want
to display some geometry, we execute functions whose parameters specify how the
vertices are to be interpreted. For example, we can display the vertices we computed
for the Sierpinski gasket, starting with the “rst vertex, as points through the function
call

glDrawArrays(GL_POINTS, 0, NumPoints);

after they have been placed on the GPU.
All OpenGL geometric primitives are variants of points, line segments, and tri-

angular polygons. A point can be displayed as a single pixel or a small group of pixels.
Finite sections of lines between two vertices, calledline segments„in contrast to
lines that are in“nite in extent„are of great importance in geometry and computer
graphics. You can use line segments to de“ne approximations to curves, or you can
use a sequence of line segments to connect data values for a graph. You can also use
line segments to display the edges of closed objects, such as polygons, that have in-
teriors. Consequently, it is often helpful to think in terms of both vertices and line
segments.

If we wish to display points or line segments, we have a few choices in OpenGL
(Figure 2.7). The primitives and theirtype speci“cations include the following:

Points (GL_POINTS) Each vertex is displayed at a size of at least one pixel.
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FIGURE 2.7 Point and line-segment types.
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FIGURE 2.10 Polygons.
(a) Simple. (b) Nonsimple.

Line segments (GL_LINES) The line-segment type causes successive pairs of ver-
tices to be interpreted as the endpoints of individual segments. Note that successive
segments usually are disconnected because the vertices are processed on a pairwise
basis.

Polylines (GL_LINE_STRIP, GL_LINE_LOOP) If successive vertices (and line seg-
ments) are to be connected, we can use the line strip, orpolyline form. Many curves
can be approximated via a suitable polyline. If we wish the polyline to be closed, we
can locate the “nal vertex in the same place as the “rst, or we can use theGL_LINE_
LOOPtype, which will draw a line segment from the “nal vertex to the “rst, thus
creating a closed path.

2.4.1 Polygon Basics
Line segments and polylines can model the edges of objects, but closed objects have
interiors (Figure 2.8). Usually we reserve the namepolygon for an object that has
a border that can be described by a line loop but also has a well-de“ned interior.3

Polygons play a special role in computer graphics because we can display them rapidly
and use them to approximate arbitrary surfaces. The performance of graphics systems
is characterized by the number of polygons per second that can be rendered.4 We can
render a polygon in a variety of ways: We can render only its edges, we can render its
interior with a solid color or a pattern, and we can render or not render the edges, as
shown in Figure 2.9. Although the outer edges of a polygon are de“ned easily by an
ordered list of vertices, if the interior is not well de“ned, then the list of vertices may
not be rendered at all or rendered in an undesirable manner. Three properties will
ensure that a polygon will be displayed correctly: It must be simple, convex, and ”at.

In two dimensions, as long as no two edges of a polygon cross each other, we have
a simple polygon. As we can see in Figure 2.10, simple two-dimensional polygons
have well-de“ned interiors. Although the locations of the vertices determine whether
or not a polygon is simple, the cost of testing is suf“ciently high (see Exercise 2.12)
that most graphics systems require that the application program does any necessary

3. The term“ll area is sometimes used instead ofpolygon.
4. Measuring polygon rendering speeds involves both the number of vertices and the number of
pixels inside.
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FIGURE 2.11 Convexity.

testing. We can ask what a graphics system will do if it is given a nonsimple polygon
to display and whether there is a way to de“ne an interior for a nonsimple polygon.
We will examine these questions further in Chapter 6.

From the perspective of implementing a practical algorithm to “ll the interior of
a polygon, simplicity alone is often not enough. Some APIs guarantee a consistent “ll
from implementation to implementation only if the polygon is convex. An object is
convexif all points on the line segment between any two points inside the object, or
on its boundary, are inside the object. Thus, in Figure 2.11,p1 andp2 are arbitrary
points inside a polygon and the entire line segment connecting them is inside the
polygon. Although so far we have been dealing with only two-dimensional objects,
this de“nition makes reference neither to the type of object nor to the number of di-
mensions. Convex objects include triangles, tetrahedra, rectangles, circles, spheres,
and parallelepipeds (Figure 2.12). There are various tests for convexity (see Exer-
cise 2.19). However, like simplicity testing, convexity testing is expensive and usually
left to the application program.

In three dimensions, polygons present a few more dif“culties because, unlike all
two-dimensional objects, all the vertices that specify the polygon need not lie in the
same plane. One property that most graphics systems exploit, and that is the basis of
OpenGL polygons, is that any three vertices that are not collinear determine both a
triangle and the plane in which that triangle lies. Hence, if we always use triangles, we
are safe„we can be sure that these objects will be rendered correctly. Often, we are
almost forced to use triangles because typical rendering algorithms are guaranteed to
be correct only if the vertices form a ”at convex polygon. In addition, hardware and
software often support a triangle type that is rendered faster than is a polygon with
three vertices.

2.4.2 Polygons in OpenGL
Returning to the OpenGL types, the only OpenGL polygons (Figure 2.13) that
OpenGL supports are triangles. Triangles can be displayed in three ways: as points
corresponding to the vertices, as edges, or with the interiors “lled. In OpenGL, we
use the functionglPolygonMode to tell the renderer to generate only the edges or
just points for the vertices, instead of “ll (the default). However, if we want to draw a

FIGURE 2.12 Convex objects.
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FIGURE 2.14 Triangle strip and triangle fan.
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imation with quadrilaterals.

polygon that is “lled and to display its edges, then we have to render it twice, once in
each mode, or to draw a “lled polygon and a line loop with the same vertices.

Here are the types:

Triangles (GL_TRIANGLES) The edges are the same as they would be if we used line
loops. Each successive group of three vertices speci“es a new triangle.

Strips and Fans (GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN) These objects are
based on groups of triangles that share vertices and edges. In the triangle strip, for
example, each additional vertex is combined with the previous two vertices to de“ne
a new triangle (Figure 2.14). A triangle fan is based on one “xed point. The next two
points determine the “rst triangle, and subsequent triangles are formed from one
new point, the previous point, and the “rst (“xed) point.

2.4.3 Approximating a Sphere
Fans and strips allow us to approximate many curved surfaces simply. For example,
one way to construct an approximation to a sphere is to use a set of polygons de-
“ned by lines of longitude and latitude, as shown in Figure 2.15. We can do so very
ef“ciently using triangle strips. Consider a unit sphere. We can describe it by the fol-
lowing three equations:

x(� , �) = sin � cos� ,

y(� , �) = cos� cos� ,

z(� , �) = sin � .
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If we “x � and draw curves as we change� , we get circles of constant longitude.
Likewise, if we “x� and vary� , we obtain circles of constant latitude. By generating
points at “xed increments of� and � , we can specify quadrilaterals, as shown in
Figure 2.15. However, because OpenGL supports triangles, not quadrilaterals, we
generate the data for two triangles for each quadrilateral. Remembering that we must
convert degrees to radians for the standard trigonometric functions, the code for
the quadrilaterals corresponding to increments of 20 degrees in� and to 20 degrees
in � is

const float DegreesToRadians = M_PI / 180.0; // M_PI = 3.14159...

point3 quad_data[342]; // 8 rows of 18 quads

int k = 0;
for(float phi = -80.0; phi <= 80.0; phi += 20.0)
{

float phir = phi*DegreesToRadians;
float phir20 = (phi + 20.0)*DegreesToRadians;

for(float theta = -180.0; theta <= 180.0; theta += 20.0)
{

float thetar = theta*DegreesToRadians;
quad_data[k] = point3(sin(thetar)*cos(phir),

cos(thetar)*cos(phir), sin(phir));
k++;
quad_data[k] = point3(sin(thetar)*cos(phir20),

cos(thetar)*cos(phir20), sin(phir20));
k++;

}
}

Later we can render these data usingglDrawArrays(GL_LINE_LOOP,...) or
some other drawing function. However, we have a problem at the poles, where we can
no longer use strips because all lines of longitude converge there. We can, however,
use two triangle fans, one at each pole as follows:

const float DegreesToRadians = M_PI / 180.0; // M_PI = 3.14159...

int k = 0;
point3 strip_data[40];

strip_data[k] = point3(0.0, 0.0, 1.0);
k++;

float sin80 = sin(80.0*DegreesToRadians);
float cos80 = cos(80.0*DegreesToRadians);
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for(float theta = -180.0; theta <= 180.0; theta += 20.0)
{

float thetar = theta*DegreesToRadians;
strip_data[k] = point3(sin(thetar)*cos80,

cos(thetar)*cos80, sin80);
k++;

}

strip_data[k] = point3(0.0, 0.0, -1.0);
k++;

for(float theta = -180.0; theta <= 180.0; theta += 20.0)
{

float thetar = theta;
strip_data[k] = point3(sin(thetar)*cos80,

cos(thetar)*cos80, sin80);
k++;

}

These data could be rendered withglDrawArrays(GL_TRIANGLE_FAN, ....) or
another drawing function. Note that because triangle fans are polygons, if we want
to get the line segment display in Figure 2.15, we would “rst have to set the polygon
mode to lines instead of “ll.

2.4.4 Triangulation
We have been using the terms polygon and triangle somewhat interchangeably. If we
are interested in objects with interiors, general polygons are problematic. A set of
vertices may not all lie in the same plane or specify a polygon that is neither simple
nor convex. Such problems do not arise with triangles. As long as the three vertices of
a triangle are not collinear, its interior is well de“ned and the triangle is simple, ”at,
and convex. Consequently, triangles are easy to render, and for these reasons triangles
are the only “llable geometric entity that OpenGL recognizes. In practice, we need to
deal with more general polygons. The usual strategy is to start with a list of vertices
and generate a set of triangles consistent with the polygon de“ned by the list, a process
known astriangulation.

Figure 2.16 shows a convex polygon and two different triangulations. Although
every set of vertices can be triangulated, not all triangulations are equivalent. Con-
sider the quadrilateral in Figure 2.17. If we triangulate it as in Figure 2.17(b), we create
two long thin triangles rather than two triangles closer to being equilateral as in Fig-
ure 2.17(c). As we shall see when we discuss lighting in Chapter 5, long thin triangles
can lead to visual artifacts when rendered. There are some simple algorithms that
work for planar convex polygons. We can start with the “rst three vertices and form
a triangle. We can then remove the second vertex from the list of vertices and repeat
the process until we have only three vertices left, which form the “nal triangle. This
process is illustrated in Figure 2.18, but it does not guarantee a good set of triangles
nor can it handle concave polygons. In Chapter 6, we will discuss the triangulation of
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FIGURE 2.16 (a) Two-dimensional polygon. (b) A triangulation. (c)
Another triangulation.

(a) (b) (c)

FIGURE 2.17 (a) Quadrilateral. (b) A triangulation. (c) Another triangu-
lation.
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FIGURE 2.18 Recursive triangulation of a convex polygon.

simple but nonconvex polygons as part of rasterization. This technique will allows us
to render more general polygons than triangles.

We will delay a discussion of more general triangulation algorithms until we dis-
cuss curves and surfaces in Chapter 10. One reason for this delay is that there are a
number of related processes that arise when we consider modeling surfaces. For ex-
ample, laser-scanning technology allows us to gather millions of unstructured three-
dimensional vertices. We then have to form a surface from these vertices, usually in
the form of a mesh of triangles. TheDelaunay triangulationalgorithm “nds a best
triangulation in the sense that if we consider the circle determined by any triangle, no
other vertex lies in this circle. Triangulation is a special case of the more general prob-
lem of tessellation, which divides a polygon into a polygonal mesh, not all of which
need be triangles. General tessellation algorithms are complex, especially when the
initial polygon may contain holes.
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FIGURE 2.19 Stroke text
(PostScript font).

2.4.5 Text
Graphical output in applications such as data analysis and display requires annota-
tion, such as labels on graphs. Although in nongraphical programs textual output is
the norm, text in computer graphics is problematic. In nongraphical applications, we
are usually content with a simple set of characters, always displayed in the same man-
ner. In computer graphics, however, we often wish to display text in a multitude of
fashions by controlling type styles, sizes, colors, and other parameters. We also want
to have available a choice of fonts.Fontsare families of typefaces of a particular style,
such as Times, Computer Modern, or Helvetica.

There are two forms of text: stroke and raster.Stroke text(Figure 2.19) is con-
structed as are other geometric objects. We use vertices to specify line segments or
curves that outline each character. If the characters are de“ned by closed boundaries,
we can “ll them. The advantage of stroke text is that it can be de“ned to have all the
detail of any other object, and because it is de“ned in the same way as other graph-
ical objects are, it can be manipulated by our standard transformations and viewed
like any other graphical primitive. Using transformations, we can make a stroke char-
acter bigger or rotate it, retaining its detail and appearance. Consequently, we need
to de“ne a character only once, and we can use transformations to generate it at the
desired size and orientation.

De“ning a full 128- or 256-character stroke font, however, can be complex, and
the font can take up signi“cant memory and processing time. The standard PostScript
fonts are de“ned by polynomial curves, and they illustrate all the advantages and dis-
advantages of stroke text. The various PostScript fonts can be used for both high- and
low-resolution applications. Often, developers mitigate the problem of slow render-
ing of such stroke characters by putting considerable processing power in the printer.

Raster text(Figure 2.20) is simple and fast. Characters are de“ned as rectangles
of bits calledbit blocks. Each block de“nes a single character by the pattern of 0 and
1 bits in the block. A raster character can be placed in the frame buffer rapidly by a
bit-block-transfer (bitblt) operation, which moves the block of bits using a single
function call. We will discuss bitblt in Chapter 7.

You can increase the size of raster characters byreplicating, or duplicating,
pixels, a process that gives larger characters a blocky appearance (Figure 2.21). Other
transformations of raster characters, such as rotation, may not make sense, because

FIGURE 2.20 Raster text.
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FIGURE 2.21 Raster-character replication.

the transformation may move the bits de“ning the character to locations that do not
correspond to the location of pixels in the frame buffer.

Because stroke and bitmap characters can be created from other primitives,
OpenGL does not have a text primitive. However, the GLUT library provides a few
prede“ned bitmap and stroke character sets that are de“ned in software and are
portable.

2.4.6 Curved Objects
The primitives in our basic set have all been de“ned through vertices. With the
exception of the point type, all consist of line segments or use line segments to de“ne
the boundary of a region that can be “lled with a solid color or a pattern. We can take
two approaches to creating a richer set of objects.

First, we can use the primitives that we have to approximate curves and surfaces.
For example, if we want a circle, we can use a regular polygon ofn sides. Likewise,
we have approximated a sphere with triangles and quadrilaterals. More generally, we
approximate a curved surface by a mesh of convex polygons„a tessellation„which
can occur either at the rendering stage or within the user program.

The other approach, which we will explore in Chapter 10, is to start with the
mathematical de“nitions of curved objects and then build graphics functions to im-
plement those objects. Objects such as quadric surfaces and parametric polynomial
curves and surfaces are well understood mathematically, and we can specify them
through sets of vertices. For example, we can specify a sphere by its center and a point
on its surface, or we can specify a cubic polynomial curve using data at four points.

2.4.7 Attributes
Although we can describe a geometric object through a set of vertices, a given object
can be displayed in many different ways. Properties that describe how an object
should be rendered are calledattributes. Available attributes depend on the type of
object. For example, a line could be black or green. It could be solid or dashed. A
polygon could be “lled with a single color or with a pattern. We could display it as
“lled or only by its edges. Several of these attributes are shown in Figure 2.22 for lines
and polygons.
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FIGURE 2.22 Attributes for (a) lines and (b) polygons.

Attributes may be associated with, orbound to, geometric objects, such as the
color of a cube. Often we will “nd it better to model an object such as the cube by its
individual faces and to specify attributes for the faces. Hence, a cube would be green
because its six faces are green. Each face could then be described by two triangles so
ultimately a green cube would be rendered as 12 green triangles.

If we go one step further, we see that each of the triangles is speci“ed through
three vertices. In a pipeline architecture, each vertex is processed independently
through a vertex shader. Hence, we can associate properties with each vertex. For
example, if we assign a different color to each vertex of a polygon, the rasterizer can
interpolate these vertex colors to obtain different colors for each fragment. Thesever-
texattributesmay also be dependent on the application. For example, in a simulation
of heat distribution of some object, the application might determine a temperature
for each vertex de“ning the object. In Chapter 3, we will include vertex attribute data
in the array with our vertex locations that is sent to the GPU.

In systems that use immediate-mode graphics and a pipeline architecture, some
attributes are part of the state of the graphics systems. Hence, there would be a
current color that would be used to render all primitives until changed by some state-
changing function such as

set_current_color(color);

Likewise, there would be attribute-setting functions for a variety of attributes.5

Each geometric type has a set of attributes. For example, a point has a color
attribute and a size attribute. Line segments can have color, thickness, and pattern
(solid, dashed, or dotted). Filled primitives, such as polygons, have more attributes
because we must use multiple parameters to specify how the “ll should be done. We
can “ll with a solid color or a pattern. We can decide not to “ll the polygon and to
display only its edges. If we “ll the polygon, we might also display the edges in a color
different from that of the interior.

5. Earlier versions of OpenGL contained state-setting functions such asglColor , glLineWidth ,
andglStipple . These deprecated attributes can be implemented in your shaders.
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In systems that support stroke text as a primitive, there is a variety of attributes.
Some of these attributes are demonstrated in Figure 2.23; they include the direction
of the text string, the path followed by successive characters in the string, the height
and width of the characters, the font, and the style (bold, italic, underlined).

Although the notion of current state works well for interactive applications, it
is inconsistent with our physical intuition. A box is green or red. It either contains a
pattern on its surfaces or it doesn•t. Object-oriented graphics takes a fundamentally
different approach in which attributes are part of a geometric object. In Chapter 8,
we will discuss scene graphs, which are fundamental to systems such as Open Scene
Graph, and we will see that they provide another higher-level object-oriented ap-
proach to computer graphics.

2.5 COLOR

Color is one of the most interesting aspects of both human perception and computer
graphics. We can use the model of the human visual system from Chapter 1 to obtain
a simple but useful color model. Full exploitation of the capabilities of the human
visual system using computer graphics requires a far deeper understanding of the
human anatomy, physiology, and psychophysics. We will present a more sophisticated
development in Chapter 6.

A visible color can be characterized by a functionC(�) that occupies wavelengths
from about 350 to 780 nm, as shown in Figure 2.24. The value for a given wavelength
� in the visible spectrum gives the intensity of that wavelength in the color.

Although this characterization is accurate in terms of a physical color whose
properties we can measure, it does not take into account how weperceivecolor. As
noted in Chapter 1, the human visual system has three types of cones responsible for
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FIGURE 2.25 Color formation. (a) Additive color.
(b) Subtractive color.

color vision. Hence, our brains do not receive the entire distributionC(�) for a given
color but rather three values„thetristimulus values„that are the responses of the
three types of cones to the color. This reduction of a color to three values leads to the
basic tenet of three-color theory: If two colors produce the same tristimulus values,
then they are visually indistinguishable.

A consequence of this tenet is that, in principle, a display needs only three
primary colors to produce the three tristimulus values needed for a human observer.
We vary the intensity of each primary to produce a color, as we saw for the CRT in
Chapter 1. The CRT is one example of the use ofadditive color, where the primary
colors add together to give the perceived color. Other examples that use additive color
include projectors and slide (positive) “lm. In such systems, the primaries are usually
red, green, and blue. With additive color, primaries add light to an initially black
display, yielding the desired color.

For processes such as commercial printing and painting, asubtractive color
model is more appropriate. Here we start with a white surface, such as a sheet of
paper. Colored pigments remove color components from light that is striking the
surface. If we assume that white light hits the surface, a particular point will be red
if all components of the incoming light are absorbed by the surface except for wave-
lengths in the red part of the spectrum, which are re”ected. In subtractive systems, the
primaries are usually thecomplementary colors: cyan, magenta, and yellow (CMY;
Figure 2.25). We will not explore subtractive color here. You need to know only that
an RGB additive system has a dual with a CMY subtractive system (see Exercise 2.8).

We can view a color as a point in acolor solid, as shown in Figure 2.26 and
in Color Plate 21. We draw the solid using a coordinate system corresponding to
the three primaries. The distance along a coordinate axis represents the amount of
the corresponding primary in the color. If we normalize the maximum value of each
primary to be 1, then we can represent any color that we can produce with this set of
primaries as a point in a unit cube. The vertices of the cube correspond to black (no
primaries on); red, green, and blue (one primary fully on); the pairs of primaries,
cyan (green and blue fully on), magenta (red and blue fully on), and yellow (red
and green fully on); and white (all primaries fully on). The principal diagonal of
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FIGURE 2.26 Color solid.

the cube connects the origin (black) with white. All colors along this line have equal
tristimulus values and appear as shades of gray.

There are many matters that we are not exploring fully here and will return to
in Chapter 6. Most concern the differences among various sets of primaries or the
limitations conferred by the physical constraints of real devices. In particular, the
set of colors produced by one device„itscolor gamut„is not the same as for other
devices, nor will it match the human•s color gamut. In addition, the tristimulus values
used on one device will not produce the same visible color as the same tristimulus
values used on another device.

2.5.1 RGB Color
Now we can look at how color is handled in a graphics system from the programmer•s
perspective„that is, through the API. There are two different approaches. We will
stress theRGB-color modelbecause an understanding of it will be crucial for our
later discussion of shading. Historically, theindexed-color model(Section 2.5.2) was
easier to support in hardware because of its lower memory requirements and the
limited colors available on displays, but in modern systems RGB color has become
the norm.

In a three-primary-color, additive-color RGB system, there are conceptually sep-
arate buffers for red, green, and blue images. Each pixel has separate red, green, and
blue components that correspond to locations in memory (Figure 2.27). In a typical
system, there might be a 1280× 1024 array of pixels, and each pixel might consist
of 24 bits (3 bytes): 1 byte for each of red, green, and blue. With present commodity
graphics cards having up to 12GB of memory, there is no longer a problem of storing
and displaying the contents of the frame buffer at video rates.

As programmers, we would like to be able to specify any color that can be
stored in the frame buffer. For our 24-bit example, there are 224 possible colors,
sometimes referred to as 16M colors, where M denotes 10242. Other systems may
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have as many as 12 (or more) bits per color or as few as 4 bits per color. Because
our API should be independent of the particulars of the hardware, we would like to
specify a color independently of the number of bits in the frame buffer and to let the
drivers and hardware match our speci“cation as closely as possible to the available
display. A natural technique is to use the color cube and to specify color components
as numbers between 0.0 and 1.0, where 1.0 denotes the maximum (orsaturated
value) of the corresponding primary and 0.0 denotes a zero value of that primary.

In applications in which we want to assign a color to each vertex, we can put
colors into a separate data structure, such as

typedef vec3 color3;

color3 colors[3] = {color3(1.0, 0.0, 0.0), color3(0.0, 1.0, 0.0),
color3(0.0, 0.0. 1.0)};

which holds the colors red, green, and blue, or we could create a single array that
contains both vertex locations and vertex colors. These data can be sent to the shaders,
where colors will be applied to pixels in the frame buffer.

Later, we shall be interested in a four-color (RGBA) system. The fourth color (A,
or alpha) also is stored in the frame buffer, as are the RGB values; it can be set with
four-dimensional versions of the color functions. In Chapter 7, we will see various
uses for alpha, such as combining images. Here we need to specify the alpha value as
part of the initialization of an OpenGL program. If blending is enabled (Chapter 7),
then the alpha value will be treated by OpenGL as either anopacityor transparency
value. Transparency and opacity are complements of each other. An opaque object
passes no light through it; a transparent object passes all light. Opacity values can
range from fully transparent (A=0.0) to fully opaque (A=1.0).

One of the “rst tasks that we must do in a program is to clear an area of the
screen„a drawing window„in which to display our output. We also must clear
this window whenever we want to draw a new frame. By using the four-dimensional
(RGBA) color system, the graphics and operating systems can interact to create effects
where the drawing window interacts with other windows that may be beneath it by
manipulating the opacity assigned to the window when it is cleared. The function call
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glClearColor(1.0, 1.0, 1.0, 1.0);

speci“es an RGB-color clearing color that is white, because the “rst three components
are set to 1.0, and is opaque, because the alpha component is 1.0. We can then use
the function glClear to make the window on the screen solid and white. Note
that by default blending is not enabled. Consequently, the alpha value can be set in
glClearColor to a value other than 1.0 and the default window will still be opaque.

2.5.2 Indexed Color
Early graphics systems had frame buffers that were limited in depth. For example,
we might have had a frame buffer with a spatial resolution of 1280× 1024, but each
pixel was only 8 bits deep. We could divide each pixel•s 8 bits into smaller groups of
bits and assign red, green, and blue to each. Although this technique was adequate in
a few applications, it usually did not give us enough ”exibility with color assignment.
Indexed color provided a solution that allowed applications to display a wide range of
colors as long as the application did not need more colors than could be referenced
by a pixel. Although indexed color is no longer part of recent versions of OpenGL,
this technique can be created within an application.

We follow an analogy with an artist who paints in oils. The oil painter can
produce an almost in“nite number of colors by mixing together a limited number of
pigments from tubes. We say that the painter has a potentially large colorpalette. At
any one time, however, perhaps due to a limited number of brushes, the painter uses
only a few colors. In this fashion, she can create an image that, although it contains
a small number of colors, expresses her choices because she can select the few colors
from a large palette.

Returning to the computer model, we can argue that if we can choose for each
application a limited number of colors from a large selection (our palette), we should
be able to create good-quality images most of the time.

We can select colors by interpreting our limited-depth pixels as indices into a
table of colors rather than as color values. Suppose that our frame buffer hask bits
per pixel. Each pixel value or index is an integer between 0 and 2k Š 1. Suppose that
we can display each color component with a precision ofmbits; that is, we can choose
from 2m reds, 2m greens, and 2m blues. Hence, we can produce any of 23m colors on the
display, but the frame buffer can specify only 2k of them. We handle the speci“cation
through a user-de“nedcolor-lookup table that is of size 2k × 3m (Figure 2.28). The
user program “lls the 2k entries (rows) of the table with the desired colors, usingm
bits for each of red, green, and blue. Once the user has constructed the table, she can
specify a color by its index, which points to the appropriate entry in the color-lookup
table (Figure 2.29). Fork = m = 8, a common con“guration, she can choose 256 out
of 16 M colors. The 256 entries in the table constitute the user•s color palette.

In systems that support color-index mode, the present color is selected by a
function that selects a particular color out of the table. Setting and changing the
entries in the color-lookup table involves interacting with the window system. One
dif“culty arises if the window system and underlying hardware support only a limited
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number of colors because the window system may have only a single color table that
must be used for all its windows, or it might have to juggle multiple tables, one for
each window on the screen.

Historically, color-index mode was important because it required less memory
for the frame buffer and fewer other hardware components. However, cost is no
longer an issue, and color-index mode presents a few problems. When we work with
dynamic images that must be shaded, usually we need more colors than are provided
by color-index mode. In addition, the interaction with the window system is also
more complex than with RGB color. Consequently, for the most part, we will assume
that we are using RGB color.

The major exception is when we consider a technique called pseudocoloring,
where we start with a monochromatic image. For example, we might have scalar
values of a physical entity such as temperature that we wish to display in color. We
can create a mapping of these values to red, green, and blue that are identical to the
color-lookup tables used for indexed color.

2.5.3 Setting of Color Attributes
For our simple example program, we use RGB color. We have three attributes to set.
The “rst is the clear color, which is set to white by the following function call:
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glClearColor(1.0, 1.0, 1.0, 1.0);

Note this function uses RGBA color.
The color we use to render points is set in the shaders. We can set an RGB color

in the application such as

typedef vec3 color3;
color3 point_color = color3(1.0, 0.0, 0.0);

or as an RGBA color as

typedef vec4 color4;
color4 point_color = color4(1.0, 0.0, 0.0, 1.0);

and send this color to the vertex shader. We could also set the color totally in the
shader. We will see a few options later in this chapter. We can set the size of our
rendered points to be 2 pixels wide by using the following OpenGL function:

glPointSize(2.0);

Note that attributes, such as the point size6 and line width, are speci“ed in terms of
the pixel size. Hence, if two displays have different-sized pixels (due to their particular
screen dimensions and resolutions), then the rendered images may appear slightly
different. Certain graphics APIs, in an attempt to ensure that identical displays will be
produced on all systems with the same user program, specify all attributes in a device-
independent manner. Unfortunately, ensuring that two systems produce the same
display has proved to be a dif“cult implementation problem. OpenGL has chosen
a more practical balance between desired behavior and realistic constraints.

2.6 VIEWING

We can now put a variety of graphical information into our world, and we can
describe how we would like these objects to appear, but we do not yet have a method
for specifying exactly which of these objects should appear on the screen. Just as what
we record in a photograph depends on where we point the camera and what lens we
use, we have to make similar viewing decisions in our program.

A fundamental concept that emerges from the synthetic-camera model that we
introduced in Chapter 1 is that the speci“cation of the objects in our scene is com-
pletely independent of our speci“cation of the camera. Once we have speci“ed both
the scene and the camera, we can compose an image. The camera forms an image
by exposing the “lm, whereas the computer system forms an image by carrying out

6. Note that point size is one of the few state variables that can be set using an OpenGL function in
the latest versions.
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a sequence of operations in its pipeline. The application program needs to worry
only about the speci“cation of the parameters for the objects and the camera, just
as the casual photographer is concerned about the resulting picture, not about how
the shutter works or the details of the photochemical interaction of “lm with light.

There are default viewing conditions in computer image formation that are sim-
ilar to the settings on a basic camera with a “xed lens. However, a camera that has a
“xed lens and sits in a “xed location forces us to distort our world to take a picture.
We can create pictures of elephants only if we place the animals suf“ciently far from
the camera, or we can photograph ants only if we put the insects relatively close to the
lens. We prefer to have the ”exibility to change the lens to make it easier to form an
image of a collection of objects. The same is true when we use our graphics system.

2.6.1 The Orthographic View
The simplest and OpenGL•s default view is the orthographic projection. We discuss
this projection and others in detail in Chapter 4, but we introduce the orthographic
projection here so that you can get started writing three-dimensional programs.
Mathematically, the orthographic projection is what we would get if the camera in
our synthetic-camera model had an in“nitely long telephoto lens and we could then
place the camera in“nitely far from our objects. We can approximate this effect, as
shown in Figure 2.30, by leaving the image plane “xed and moving the camera far
from this plane. In the limit, all the projectors become parallel, and the center of
projection is replaced by adirection of projection.

Rather than worrying about cameras an in“nite distance away, suppose that we
start with projectors that are parallel to the positivez-axis and the projection plane at
z = 0, as shown in Figure 2.31. Note that not only are the projectors perpendicular or
orthogonal to the projection plane, but also we can slide the projection plane along
thez-axis without changing where the projectors intersect this plane.

For orthographic viewing, we can think of there being a special orthographic
camera that resides in the projection plane, something that is not possible for other
views. Perhaps more accurately stated, there is a reference point in the projection
plane from which we can make measurements of a view volume and a direction of
projection. In OpenGL, the reference point starts off at the origin and the camera
points in the negativez-direction, as shown in Figure 2.32. The orthographic pro-
jection takes a point(x, y, z) and projects it into the point(x, y, 0), as shown in
Figure 2.33. Note that if we are working in two dimensions with all vertices in the
planez = 0, a point and its projection are the same; however, we can employ the
machinery of a three-dimensional graphics system to produce our image.

In OpenGL, an orthographic projection with a right-parallelepiped viewing vol-
ume is the default. The volume is the cube de“ned by the planes

x = ± 1,

y = ± 1,

z = ± 1.
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FIGURE 2.30 Creating an orthographic view by moving the camera
away from the projection plane.

The orthographic projection •seesŽ only those objects in the volume speci“ed by
this viewing volume. Unlike a real camera, the orthographic projection can include
objects behind the camera. Thus, because the planez = 0 is located betweenŠ1 and
1, the two-dimensional plane intersects the viewing volume.

In Chapters 3 and 4, we will learn to use transformations to create other views.
For now, we will scale and position our objects so those that we wish to view are inside
the default volume.
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FIGURE 2.31 Orthographic projectors with projection plane z = 0.
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FIGURE 2.35 Two-dimensional viewing. (a) Objects before clipping.
(b) Image after clipping.

2.6.2 Two-Dimensional Viewing
Remember that, in our view, two-dimensional graphics is a special case of
three-dimensional graphics. Our viewing area is in the planez = 0 within a three-
dimensionalviewing volume, as shown in Figure 2.34.

We could also consider two-dimensional viewing directly by taking a rectangular
area of our two-dimensional world and transferring its contents to the display, as
shown in Figure 2.35. The area of the world that we image is known as theviewing
rectangle, or clipping rectangle. Objects inside the rectangle are in the image; objects
outside areclipped out and are not displayed. Objects that straddle the edges of the
rectangle are partially visible in the image. The size of the window on the display
and where this window is placed on the display are independent decisions that we
examine in Section 2.7.
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2.7 CONTROL FUNCTIONS

We are almost done with our “rst program, but we must discuss the minimal inter-
actions with the window and operating systems. If we look at the details for a speci“c
environment, such as the X Window System on a Linux platform or Microsoft Win-
dows on a PC, we see that the programmer•s interface between the graphics system
and the operating and window systems can be complex. Exploitation of the pos-
sibilities open to the application programmer requires knowledge speci“c to these
systems. In addition, the details can be different for two different environments, and
discussing these differences will do little to enhance our understanding of computer
graphics.

Rather than deal with these issues in detail, we look at a minimal set of operations
that must take place from the perspective of the graphics application program. Earlier
we discussed the OpenGL Utility Toolkit (GLUT); it is a library of functions that
provides a simple interface between the systems. Details speci“c to the underlying
windowing or operating system are inside the implementation, rather than being
part of its API. Operationally, we add another library to our standard library search
path. GLUT will help us to understand the interactions that characterize modern
interactive graphics systems, including a wide range of APIs, operating systems, and
window systems. The application programs that we produce using GLUT should run
under multiple window systems.

2.7.1 Interaction with the Window System
The termwindowis used in a number of different ways in the graphics and worksta-
tion literature. We usewindow, or screen window, to denote a rectangular area of
our display. We are concerned only with raster displays. A window has a height and
width, and because the window displays the contents of the frame buffer, positions
in the window are measured inwindow or screen coordinates,7 where the units are
pixels.

In a modern environment, we can display many windows on the monitor. Each
can have a different purpose, ranging from editing a “le to monitoring our system.
We use the termwindow systemto refer to the multiwindow environment provided by
systems such as the X Window System and Microsoft Windows. The window in which
the graphics output appears is one of the windows managed by the window system.
Hence, to the window system, the graphics window is a particular type of window„
one in which graphics can be displayed or rendered. References to positions in this
window are relative to one corner of the window. We have to be careful about which
corner is the origin. In science and engineering, the lower-left corner is the origin
and has window coordinates (0, 0). However, virtually all raster systems display

7. In OpenGL, window coordinates are three-dimensional, whereas screen coordinates are two-
dimensional. Both systems use units measured in pixels forx andy, but window coordinates retain
depth information.
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their screens in the same way as commercial television systems do„from top to
bottom, left to right. From this perspective, the top-left corner should be the origin.
Our OpenGL functions assume that the origin is bottom left, whereas information
returned from the windowing system, such as the mouse position, often has the
origin at the top left and thus requires us to convert the position from one coordinate
system to the other.

Although our display may have a resolution of, say, 1280× 1024 pixels, the
window that we use can have any size. Thus, the frame buffer should have a resolution
at least equal to the display size. Conceptually, if we use a window of 300× 400 pixels,
we can think of it as corresponding to a 300× 400 frame buffer, even though it uses
only a part of the real frame buffer.

Before we can open a window, there must be interaction between the windowing
system and OpenGL. In GLUT, this interaction is initiated by the following function
call:

glutInit(int *argc, char **argv);

The two arguments allow the user to pass command-line arguments, as in the stan-
dard Cmain function, and are usually the same as inmain. We can now open an
OpenGL window using the GLUT function

glutCreateWindow(char *title);

where the title at the top of the window is given by the stringtitle .
The window that we create has a default size, a position on the screen, and

characteristics such as the use of RGB color. We can also use GLUT functions before
window creation to specify these parameters. For example, the code

glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE);
glutInitWindowSize(640, 480);
glutInitWindowPosition(0, 0);

speci“es a 640 width× 480 height window in the top-left corner of the display. We
specify RGB rather than indexed (GLUT_INDEX) color, a depth buffer for hidden-
surface removal, and double rather than single (GLUT_SINGLE) buffering. The de-
faults, which are all we need for now, are RGB color, no hidden-surface removal, and
single buffering. Thus, we do not need to request these options explicitly, but speci-
fying them makes the code clearer. Note that parameters are logicallyor •ed together
in the argument toglutInitDisplayMode .

2.7.2 Aspect Ratio and Viewports
The aspect ratioof a rectangle is the ratio of the rectangle•s width to its height.
The independence of the object, viewing, and workstation window speci“cations can
cause undesirable side effects if the aspect ratio of the viewing rectangle, speci“ed
by camera parameters, is not the same as the aspect ratio of the window speci“ed














































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































